Activation of the PKB/AKT pathway by ICAM-2.
We identified intracellular adhesion molecule-2 ( ICAM-2) in a genetic screen as an activator of the PI3K/AKT pathway leading to inhibition of apoptosis. ICAM-2 induced tyrosine phosphorylation of ezrin and PI3K kinase membrane translocation, resulting in phosphatidylinositol 3,4,5 production, PDK-1 and AKT activation, and subsequent phosphorylation of AKT targets BAD, GSK3, and FKHR. ICAM-2 clustering protected primary human CD19+ cells from TNFalpha- and Fas-mediated apoptosis as determined by single-cell analysis. ICAM-2 engagement by CD19+ cells of its natural receptor, LFA-1, on CD4+ naive cells specifically induced AKT activity in the absence of an MHC-peptide interaction. These results attribute a novel signaling function to ICAM-2 that might suggest mechanisms by which ICAM-2 signals intracellular communication at various immunological synapses.[1]References
- Activation of the PKB/AKT pathway by ICAM-2. Perez, O.D., Kinoshita, S., Hitoshi, Y., Payan, D.G., Kitamura, T., Nolan, G.P., Lorens, J.B. Immunity (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg