The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

EZR  -  ezrin

Homo sapiens

Synonyms: CVIL, CVL, Cytovillin, Ezrin, HEL-S-105, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of VIL2

 

Psychiatry related information on VIL2

 

High impact information on VIL2

 

Chemical compound and disease context of VIL2

 

Biological context of VIL2

  • Finally, overexpression of the C-terminal threonine phosphorylation site mutant of ezrin has a dominant inhibitory effect on PKCalpha-induced cell migration [16].
  • Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility [16].
  • Here we show that cells overproducing a mutant form of ezrin in which Tyr-353 was changed to a phenylalanine (Y353F) undergo apoptosis when assayed for tubulogenesis [17].
  • Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site [18].
  • It is concluded that ezrin regulates cell-cell and cell-matrix adhesion, by interacting with cell adhesion molecules E-cadherin and beta-catenin, and may thus play an important role in the control of adhesion and invasiveness of cancer cells [19].
 

Anatomical context of VIL2

 

Associations of VIL2 with chemical compounds

 

Physical interactions of VIL2

  • Furthermore, our data indicate that moesin is identical to the 77-kDa band that copurifies with ezrin in its isolation from human placenta [Bretscher, A. (1989) J. Cell Biol. 108, 921-930] [27].
  • As shown earlier for the human homolog of NHERF, we also found that the cytoskeletal protein ezrin binds to the carboxyl-terminal domain of E3KARP [28].
  • In these cells, the mutated ezrin did not co-localize or co-immunoprecipitate with CD95 [29].
  • Our biochemical study verifies that ezrin binds to PALS1 via its N terminus and is co-localized with PALS1 to the apical membrane of gastric parietal cells [30].
  • The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains [31].
 

Enzymatic interactions of VIL2

  • Akt2 phosphorylates ezrin to trigger NHE3 translocation and activation [32].
  • Ezrin was constitutively tyrosine phosphorylated in wild-type and CD45-deficient Jurkat T cells, but not in Lck-deficient cells [33].
  • CD95/phosphorylated ezrin association underlies HIV-1 GP120/IL-2-induced susceptibility to CD95(APO-1/Fas)-mediated apoptosis of human resting CD4(+)T lymphocytes [34].
  • Ezrin was then found to be homologous to p81 and to be phosphorylated on tyrosine in response to EGF (Gould, K. L., J. A. Cooper, A. Bretscher, and T. Hunter. 1986. J. Cell Biol. 102:660-669) [35].
  • In A431 cells in which cell surface ruffling was stimulated by EGF, myosin VI was phosphorylated and recruited into the newly formed ruffles along with ezrin and myosin V [36].
 

Co-localisations of VIL2

  • Here we show that human T cells that are susceptible to CD95-mediated apoptosis, exhibit a constitutive polarized morphology, and that CD95 colocalizes with ezrin at the site of cellular polarization [37].
 

Regulatory relationships of VIL2

  • Ezrin controls the macromolecular complexes formed between an adapter protein Na+/H+ exchanger regulatory factor and the cystic fibrosis transmembrane conductance regulator [38].
  • These two PDZ (postsynaptic density protein [PSD-95]/disc large [DLG]-A/ZO-1) domain proteins had a similar polarized distribution and high resistance to detergent extractability, indicative of cytoskeletal association, both in primary cultures of rat RPE and in a clonal RPE-J cell line expressing high levels of transfected ezrin [25].
  • Based on these and additional results, we propose a model whereby dormant ezrin can be activated to bind EBP50 on its NH2-terminal end and F-actin on its COOH-terminal end [39].
  • Here we report the identification of the tyrosine phosphorylation sites in ezrin using bacterially expressed protein as a substrate for in vitro phosphorylation with the EGF receptor [13].
  • Altogether, these observations indicate that ezrin is able to trigger FAK activation in signaling events that are not elicited by cell-matrix adhesion [40].
 

Other interactions of VIL2

 

Analytical, diagnostic and therapeutic context of VIL2

References

  1. Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. Grönholm, M., Sainio, M., Zhao, F., Heiska, L., Vaheri, A., Carpén, O. J. Cell. Sci. (1999) [Pubmed]
  2. Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. Sainio, M., Zhao, F., Heiska, L., Turunen, O., den Bakker, M., Zwarthoff, E., Lutchman, M., Rouleau, G.A., Jääskeläinen, J., Vaheri, A., Carpén, O. J. Cell. Sci. (1997) [Pubmed]
  3. Altered expression of the ERM proteins in lung adenocarcinoma. Tokunou, M., Niki, T., Saitoh, Y., Imamura, H., Sakamoto, M., Hirohashi, S. Lab. Invest. (2000) [Pubmed]
  4. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Akisawa, N., Nishimori, I., Iwamura, T., Onishi, S., Hollingsworth, M.A. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  5. Androgen induction of prostate cancer cell invasion is mediated by ezrin. Chuan, Y.C., Pang, S.T., Cedazo-Minguez, A., Norstedt, G., Pousette, A., Flores-Morales, A. J. Biol. Chem. (2006) [Pubmed]
  6. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Lugini, L., Matarrese, P., Tinari, A., Lozupone, F., Federici, C., Iessi, E., Gentile, M., Luciani, F., Parmiani, G., Rivoltini, L., Malorni, W., Fais, S. Cancer Res. (2006) [Pubmed]
  7. Ezrin in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Park, H.R., Jung, W.W., Bacchini, P., Bertoni, F., Kim, Y.W., Park, Y.K. Pathol. Res. Pract. (2006) [Pubmed]
  8. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Trofatter, J.A., MacCollin, M.M., Rutter, J.L., Murrell, J.R., Duyao, M.P., Parry, D.M., Eldridge, R., Kley, N., Menon, A.G., Pulaski, K. Cell (1993) [Pubmed]
  9. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Trofatter, J.A., MacCollin, M.M., Rutter, J.L., Murrell, J.R., Duyao, M.P., Parry, D.M., Eldridge, R., Kley, N., Menon, A.G., Pulaski, K. Cell (1993) [Pubmed]
  10. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Yu, Y., Khan, J., Khanna, C., Helman, L., Meltzer, P.S., Merlino, G. Nat. Med. (2004) [Pubmed]
  11. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Cywes, C., Wessels, M.R. Nature (2001) [Pubmed]
  12. ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Gautreau, A., Louvard, D., Arpin, M. Curr. Opin. Cell Biol. (2002) [Pubmed]
  13. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. Krieg, J., Hunter, T. J. Biol. Chem. (1992) [Pubmed]
  14. Immunological and structural homology between human T-cell leukemia virus type I envelope glycoprotein and a region of human interleukin-2 implicated in binding the beta receptor. Kohtz, D.S., Altman, A., Kohtz, J.D., Puszkin, S. J. Virol. (1988) [Pubmed]
  15. Estradiol-induced ezrin overexpression in ovarian cancer: a new signaling domain for estrogen. Song, J., Fadiel, A., Edusa, V., Chen, Z., So, J., Sakamoto, H., Fishman, D.A., Naftolin, F. Cancer Lett. (2005) [Pubmed]
  16. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. Ng, T., Parsons, M., Hughes, W.E., Monypenny, J., Zicha, D., Gautreau, A., Arpin, M., Gschmeissner, S., Verveer, P.J., Bastiaens, P.I., Parker, P.J. EMBO J. (2001) [Pubmed]
  17. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Gautreau, A., Poullet, P., Louvard, D., Arpin, M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  18. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Gary, R., Bretscher, A. Mol. Biol. Cell (1995) [Pubmed]
  19. Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/beta-catenin. Hiscox, S., Jiang, W.G. J. Cell. Sci. (1999) [Pubmed]
  20. The ezrin protein family: membrane-cytoskeleton interactions and disease associations. Vaheri, A., Carpén, O., Heiska, L., Helander, T.S., Jääskeläinen, J., Majander-Nordenswan, P., Sainio, M., Timonen, T., Turunen, O. Curr. Opin. Cell Biol. (1997) [Pubmed]
  21. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. Barreiro, O., Yanez-Mo, M., Serrador, J.M., Montoya, M.C., Vicente-Manzanares, M., Tejedor, R., Furthmayr, H., Sanchez-Madrid, F. J. Cell Biol. (2002) [Pubmed]
  22. Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Alonso-Lebrero, J.L., Serrador, J.M., Domínguez-Jiménez, C., Barreiro, O., Luque, A., del Pozo, M.A., Snapp, K., Kansas, G., Schwartz-Albiez, R., Furthmayr, H., Lozano, F., Sánchez-Madrid, F. Blood (2000) [Pubmed]
  23. Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. Alfthan, K., Heiska, L., Grönholm, M., Renkema, G.H., Carpén, O. J. Biol. Chem. (2004) [Pubmed]
  24. The adenosine 2b receptor is recruited to the plasma membrane and associates with E3KARP and Ezrin upon agonist stimulation. Sitaraman, S.V., Wang, L., Wong, M., Bruewer, M., Hobert, M., Yun, C.H., Merlin, D., Madara, J.L. J. Biol. Chem. (2002) [Pubmed]
  25. Polarity and developmental regulation of two PDZ proteins in the retinal pigment epithelium. Bonilha, V.L., Rodriguez-Boulan, E. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  26. Sp1 and AP-1 regulate expression of the human gene VIL2 in esophageal carcinoma cells. Gao, S.Y., Li, E.M., Cui, L., Lu, X.F., Meng, L.Y., Yuan, H.M., Xie, J.J., Du, Z.P., Pang, J.X., Xu, L.Y. J. Biol. Chem. (2009) [Pubmed]
  27. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Lankes, W.T., Furthmayr, H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  28. NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin. Yun, C.H., Lamprecht, G., Forster, D.V., Sidor, A. J. Biol. Chem. (1998) [Pubmed]
  29. Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin. Lozupone, F., Lugini, L., Matarrese, P., Luciani, F., Federici, C., Iessi, E., Margutti, P., Stassi, G., Malorni, W., Fais, S. J. Biol. Chem. (2004) [Pubmed]
  30. PALS1 specifies the localization of ezrin to the apical membrane of gastric parietal cells. Cao, X., Ding, X., Guo, Z., Zhou, R., Wang, F., Long, F., Wu, F., Bi, F., Wang, Q., Fan, D., Forte, J.G., Teng, M., Yao, X. J. Biol. Chem. (2005) [Pubmed]
  31. Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P. Koltzscher, M., Neumann, C., König, S., Gerke, V. Mol. Biol. Cell (2003) [Pubmed]
  32. Akt2 phosphorylates ezrin to trigger NHE3 translocation and activation. Shiue, H., Musch, M.W., Wang, Y., Chang, E.B., Turner, J.R. J. Biol. Chem. (2005) [Pubmed]
  33. Ezrin is a substrate for Lck in T cells. Autero, M., Heiska, L., Rönnstrand, L., Vaheri, A., Gahmberg, C.G., Carpén, O. FEBS Lett. (2003) [Pubmed]
  34. CD95/phosphorylated ezrin association underlies HIV-1 GP120/IL-2-induced susceptibility to CD95(APO-1/Fas)-mediated apoptosis of human resting CD4(+)T lymphocytes. Luciani, F., Matarrese, P., Giammarioli, A.M., Lugini, L., Lozupone, F., Federici, C., Iessi, E., Malorni, W., Fais, S. Cell Death Differ. (2004) [Pubmed]
  35. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. Bretscher, A. J. Cell Biol. (1989) [Pubmed]
  36. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. Buss, F., Kendrick-Jones, J., Lionne, C., Knight, A.E., Côté, G.P., Paul Luzio, J. J. Cell Biol. (1998) [Pubmed]
  37. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. Parlato, S., Giammarioli, A.M., Logozzi, M., Lozupone, F., Matarrese, P., Luciani, F., Falchi, M., Malorni, W., Fais, S. EMBO J. (2000) [Pubmed]
  38. Ezrin controls the macromolecular complexes formed between an adapter protein Na+/H+ exchanger regulatory factor and the cystic fibrosis transmembrane conductance regulator. Li, J., Dai, Z., Jana, D., Callaway, D.J., Bu, Z. J. Biol. Chem. (2005) [Pubmed]
  39. The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. Reczek, D., Bretscher, A. J. Biol. Chem. (1998) [Pubmed]
  40. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. Poullet, P., Gautreau, A., Kadaré, G., Girault, J.A., Louvard, D., Arpin, M. J. Biol. Chem. (2001) [Pubmed]
  41. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Urzainqui, A., Serrador, J.M., Viedma, F., Yáñez-Mó, M., Rodríguez, A., Corbí, A.L., Alonso-Lebrero, J.L., Luque, A., Deckert, M., Vázquez, J., Sánchez-Madrid, F. Immunity (2002) [Pubmed]
  42. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. Maresso, A.W., Baldwin, M.R., Barbieri, J.T. J. Biol. Chem. (2004) [Pubmed]
  43. E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. Sun, F., Hug, M.J., Lewarchik, C.M., Yun, C.H., Bradbury, N.A., Frizzell, R.A. J. Biol. Chem. (2000) [Pubmed]
  44. NHERF associations with sodium-hydrogen exchanger isoform 3 (NHE3) and ezrin are essential for cAMP-mediated phosphorylation and inhibition of NHE3. Weinman, E.J., Steplock, D., Donowitz, M., Shenolikar, S. Biochemistry (2000) [Pubmed]
  45. Genomic structure of the human ezrin gene. Majander-Nordenswan, P., Sainio, M., Turunen, O., Jääskeläinen, J., Carpén, O., Kere, J., Vaheri, A. Hum. Genet. (1998) [Pubmed]
  46. Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. Reczek, D., Berryman, M., Bretscher, A. J. Cell Biol. (1997) [Pubmed]
 
WikiGenes - Universities