The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Allotopic antagonism of the non-peptide atrial natriuretic peptide (ANP) antagonist HS-142-1 on natriuretic peptide receptor NPR-A.

The microbial polysaccharide HS-142-1 has been documented as an antagonist of natriuretic peptides. It inhibits activation and peptide binding to both guanylate receptors natriuretic peptide receptor (NPR)-A and NPR-B, but has no effect on the non-cyclase receptor NPR-C. At first sight the effect of HS-142-1 on peptide binding appears to be surmountable, suggesting that it might be competitive despite its chemically divergent nature. We explored its mode of action on wild-type NPR-A (WT), on a disulphide-bridged constitutively active mutant (C423S) and on truncated mutants lacking either their cytoplasmic domain (DeltaKC) or both the cytoplasmic and the transmembrane domains ( ECD). On the WT, HS-142-1 inhibited atrial natriuretic peptide (ANP) binding with a pK value of 6.51 +/- 0.07 (K(d)=0.31 microM). It displayed a similar effect on the C423S mutant (pK=6.31 +/- 0.11), indicating that its action might not be due to interference with receptor dimerization. HS-142-1 also inhibited ANP binding to DeltaKC with a pK of 7.05 +/- 0.05 (K(d)=0.089 microM), but it was inactive on ANP binding to ECD at a concentration of 10(-4) M, suggesting that the antagonism was not competitive at the peptide-binding site located on the ECD and that the transmembrane domain might be required. HS-142-1 also enhanced dissociation of NPR-A-bound (125)I-ANP in the presence of excess unlabelled ANP, implying an allotopic (allosteric) mode of action for the antagonist.[1]

References

 
WikiGenes - Universities