The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN4361871     [5-(2-amino-6-oxo-3H-purin-9- yl)-3,4...

Synonyms: SureCN12727827, CHEBI:123129, SBB001419, AR-1D8709, AKOS003368704, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of guanosine monophosphate


Psychiatry related information on guanosine monophosphate


High impact information on guanosine monophosphate


Chemical compound and disease context of guanosine monophosphate

  • Methylene blue (MB), an inhibitor of soluble guanylate cyclase, the effector enzyme of NO, also eliminated differences in coronary flow and produced similar areas of local myocardial ischemia in endotoxin-treated hearts but not in control hearts.(ABSTRACT TRUNCATED AT 250 WORDS)[15]
  • Ethionine-induced hepatomas are thus characterized by: (a) significant increases in cGMP content and in guanylate cyclase and cGMP-phosphodiesterase activities, (b) a change in the subcellular distribution of guanylate cyclase, and (c) altered responsiveness of the guanylate cyclase-cGMP system to several agonists [16].
  • A carboxyl fragment of the membrane form of guanylate cyclase from rat brain, which contains a region homologous to soluble guanylate and adenylate cyclases, was expressed in Escherichia coli with a double plasmid system that encodes T7 RNA polymerase (Tabor, S., and Richardson, C.C. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1074-1078) [17].
  • L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells [18].
  • Guanylin, uroguanylin, and heat-stable euterotoxin activate guanylate cyclase C and/or a pertussis toxin-sensitive G protein in human proximal tubule cells [19].

Biological context of guanosine monophosphate


Anatomical context of guanosine monophosphate

  • The addition of resact to the membranes caused a shift in the Mr, a complete loss of 32P, and a 70% reduction in guanylate cyclase activity within 1 min; resact had an ED 50 at 100 nM concentration [23].
  • Resact, a peptide obtained from eggs, causes a change in the Mr, and a loss of 32P from a plasma membrane protein identified as guanylate cyclase [23].
  • It diffuses into underlying smooth muscle where it causes relaxation by activating guanylate cyclase, so producing a rise in cyclic GMP levels [24].
  • We show here that the guanylate cyclase activity of unilluminated bovine rod outer segments increases markedly (5 to 20-fold) when the calcium level is lowered from 200 nM to 50 nM [25].
  • Guanylate cyclase has been strongly implicated as a cell-surface receptor on spermatozoa for a chemotactic peptide, and on various other cells as a receptor for atrial natriuretic peptides [20].

Associations of guanosine monophosphate with other chemical compounds


Gene context of guanosine monophosphate

  • Among the most abundant antiviral proteins induced by interferon-gamma are guanylate-binding proteins such as GBP1 and GBP2 [31].
  • Expression of HO-1 in arteries stimulated vascular relaxation, mediated by guanylate cyclase and cGMP, independent of nitric oxide [32].
  • Dynamins are large GTPases that belong to a protein superfamily that, in eukaryotic cells, includes classical dynamins, dynamin-like proteins, OPA1, Mx proteins, mitofusins and guanylate-binding proteins/atlastins [33].
  • Together these results indicate that IL-1 activates a novel NO-independent pathway of soluble guanylate cyclase activation in human VSMC [30].
  • LIN-2 belongs to the membrane-associated guanylate kinase family of proteins [34].

Analytical, diagnostic and therapeutic context of guanosine monophosphate


  1. Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Perrault, I., Rozet, J.M., Calvas, P., Gerber, S., Camuzat, A., Dollfus, H., Châtelin, S., Souied, E., Ghazi, I., Leowski, C., Bonnemaison, M., Le Paslier, D., Frézal, J., Dufier, J.L., Pittler, S., Munnich, A., Kaplan, J. Nat. Genet. (1996) [Pubmed]
  2. Guanylate cyclase activity and sperm function. Revelli, A., Ghigo, D., Moffa, F., Massobrio, M., Tur-Kaspa, I. Endocr. Rev. (2002) [Pubmed]
  3. Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Paul, A.K., Marala, R.B., Jaiswal, R.K., Sharma, R.K. Science (1987) [Pubmed]
  4. Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate. Forte, L.R., Eber, S.L., Turner, J.T., Freeman, R.H., Fok, K.F., Currie, M.G. J. Clin. Invest. (1993) [Pubmed]
  5. Increased guanylate cyclase activity is associated with an increase in cyclic guanosine 3',5'-monophosphate in left ventricular hypertrophy. Sadoff, J.D., Scholz, P.M., Tse, J., Weiss, H.R. J. Clin. Invest. (1996) [Pubmed]
  6. Properties and subcellular distribution of guanylate cyclase activity in rat renal medulla: correlation with tissue content of guanosine 3',5'-monophosphate. Craven, P.A., DeRubertis, F.R. Biochemistry (1976) [Pubmed]
  7. VIP-sensitive adenylate cyclase, guanylate cyclase, muscarinic receptors, choline acetyltransferase and acetylcholinesterase, in brain tissue afflicted by Alzheimer's disease/senile dementia of the Alzheimer type. Danielsson, E., Eckernäs, S.A., Westlind-Danielsson, A., Nordström, O., Bartfai, T., Gottfries, C.G., Wallin, A. Neurobiol. Aging (1988) [Pubmed]
  8. Effect of water deprivation and salt loading on atrial natriuretic peptide-stimulated guanylate cyclase activity in the rat subfornical organ. Israel, A., del Rosario Garrido, M., Barbella, Y., Becemberg, I. Neuroendocrinology (1989) [Pubmed]
  9. Activators of soluble guanylate cyclase for the treatment of male erectile dysfunction. Brioni, J.D., Nakane, M., Hsieh, G.C., Moreland, R.B., Kolasa, T., Sullivan, J.P. Int. J. Impot. Res. (2002) [Pubmed]
  10. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Funke, L., Dakoji, S., Bredt, D.S. Annu. Rev. Biochem. (2005) [Pubmed]
  11. nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Wei, X., Malicki, J. Nat. Genet. (2002) [Pubmed]
  12. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Butz, S., Okamoto, M., Südhof, T.C. Cell (1998) [Pubmed]
  13. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Gu, S.M., Thompson, D.A., Srikumari, C.R., Lorenz, B., Finckh, U., Nicoletti, A., Murthy, K.R., Rathmann, M., Kumaramanickavel, G., Denton, M.J., Gal, A. Nat. Genet. (1997) [Pubmed]
  14. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Woods, D.F., Bryant, P.J. Cell (1991) [Pubmed]
  15. Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Avontuur, J.A., Bruining, H.A., Ince, C. Circ. Res. (1995) [Pubmed]
  16. Increased guanylate cyclase activity and guanosine 3',5'-monophosphate content in ethionine-induced hepatomas. DeRubertis, F.R., Craven, P. Cancer Res. (1977) [Pubmed]
  17. The carboxyl region contains the catalytic domain of the membrane form of guanylate cyclase. Thorpe, D.S., Morkin, E. J. Biol. Chem. (1990) [Pubmed]
  18. L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. Deguchi, T., Yoshioka, M. J. Biol. Chem. (1982) [Pubmed]
  19. Guanylin, uroguanylin, and heat-stable euterotoxin activate guanylate cyclase C and/or a pertussis toxin-sensitive G protein in human proximal tubule cells. Sindiće, A., Başoglu, C., Cerçi, A., Hirsch, J.R., Potthast, R., Kuhn, M., Ghanekar, Y., Visweswariah, S.S., Schlatter, E. J. Biol. Chem. (2002) [Pubmed]
  20. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Singh, S., Lowe, D.G., Thorpe, D.S., Rodriguez, H., Kuang, W.J., Dangott, L.J., Chinkers, M., Goeddel, D.V., Garbers, D.L. Nature (1988) [Pubmed]
  21. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Chinkers, M., Garbers, D.L., Chang, M.S., Lowe, D.G., Chin, H.M., Goeddel, D.V., Schulz, S. Nature (1989) [Pubmed]
  22. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Kawamura, S., Murakami, M. Nature (1991) [Pubmed]
  23. Retention of a functional resact receptor in isolated sperm plasma membranes. Bentley, J.K., Shimomura, H., Garbers, D.L. Cell (1986) [Pubmed]
  24. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Garthwaite, J., Charles, S.L., Chess-Williams, R. Nature (1988) [Pubmed]
  25. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Koch, K.W., Stryer, L. Nature (1988) [Pubmed]
  26. Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. Lloyd, K.G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Goldstein, M., Shibuya, M., Kelley, W.N., Fox, I.H. N. Engl. J. Med. (1981) [Pubmed]
  27. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Hong, Y., Stronach, B., Perrimon, N., Jan, L.Y., Jan, Y.N. Nature (2001) [Pubmed]
  28. The protein kinase domain of the ANP receptor is required for signaling. Chinkers, M., Garbers, D.L. Science (1989) [Pubmed]
  29. NO news from insect brains. Bicker, G. Trends Neurosci. (1998) [Pubmed]
  30. Interleukin 1 activates soluble guanylate cyclase in human vascular smooth muscle cells through a novel nitric oxide-independent pathway. Beasley, D., McGuiggin, M. J. Exp. Med. (1994) [Pubmed]
  31. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Prakash, B., Praefcke, G.J., Renault, L., Wittinghofer, A., Herrmann, C. Nature (2000) [Pubmed]
  32. Heme oxygenase-1 protects against vascular constriction and proliferation. Duckers, H.J., Boehm, M., True, A.L., Yet, S.F., San, H., Park, J.L., Clinton Webb, R., Lee, M.E., Nabel, G.J., Nabel, E.G. Nat. Med. (2001) [Pubmed]
  33. The dynamin superfamily: universal membrane tubulation and fission molecules? Praefcke, G.J., McMahon, H.T. Nat. Rev. Mol. Cell Biol. (2004) [Pubmed]
  34. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. Cohen, A.R., Woods, D.F., Marfatia, S.M., Walther, Z., Chishti, A.H., Anderson, J.M., Wood, D.F. J. Cell Biol. (1998) [Pubmed]
  35. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. Terada, Y., Tomita, K., Nonoguchi, H., Marumo, F. J. Clin. Invest. (1992) [Pubmed]
  36. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney. Scholz, H., Kurtz, A. J. Clin. Invest. (1993) [Pubmed]
  37. Antimalarial properties of bredinin. Prediction based on identification of differences in human host-parasite purine metabolism. Webster, H.K., Whaun, J.M. J. Clin. Invest. (1982) [Pubmed]
  38. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. Haskins, J., Gu, L., Wittchen, E.S., Hibbard, J., Stevenson, B.R. J. Cell Biol. (1998) [Pubmed]
WikiGenes - Universities