The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The crystal structure of rat liver AKR7A1. A dimeric member of the aldo-keto reductase superfamily.

The structure of the rat liver aflatoxin dialdehyde reductase (AKR7A1) has been solved to 1.38-A resolution. Although it shares a similar alpha/beta-barrel structure with other members of the aldo-keto reductase superfamily, AKR7A1 is the first dimeric member to be crystallized. The crystal structure also reveals details of the ternary complex as one subunit of the dimer contains NADP(+) and the inhibitor citrate. Although the underlying catalytic mechanism appears similar to other aldo-keto reductases, the substrate-binding pocket contains several charged amino acids (Arg-231 and Arg-327) that distinguish it from previously characterized aldo-keto reductases with respect to size and charge. These differences account for the substrate specificity for 4-carbon acid-aldehydes such as succinic semialdehyde and 2-carboxybenzaldehyde as well as for the idiosyncratic substrate aflatoxin B(1) dialdehyde of this subfamily of enzymes. Structural differences between the AKR7A1 ternary complex and apoenzyme reveal a significant hinged movement of the enzyme involving not only the loops of the structure but also parts of the alpha/beta-barrel most intimately involved in cofactor binding.[1]

References

  1. The crystal structure of rat liver AKR7A1. A dimeric member of the aldo-keto reductase superfamily. Kozma, E., Brown, E., Ellis, E.M., Lapthorn, A.J. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities