Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1.
Ca(v)2.1 channels, which mediate P/Q-type Ca2+ currents, undergo Ca2+/calmodulin (CaM)-dependent inactivation and facilitation that can significantly alter synaptic efficacy. Here we report that the neuronal Ca2+-binding protein 1 ( CaBP1) modulates Ca(v)2.1 channels in a manner that is markedly different from modulation by CaM. CaBP1 enhances inactivation, causes a depolarizing shift in the voltage dependence of activation, and does not support Ca2+-dependent facilitation of Ca(v)2.1 channels. These inhibitory effects of CaBP1 do not require Ca2+, but depend on the CaM-binding domain in the alpha1 subunit of Ca(v)2.1 channels (alpha12.1). CaBP1 binds to the CaM-binding domain, co-immunoprecipitates with alpha12.1 from transfected cells and brain extracts, and colocalizes with alpha12.1 in discrete microdomains of neurons in the hippocampus and cerebellum. Our results identify an interaction between Ca2+ channels and CaBP1 that may regulate Ca2+-dependent forms of synaptic plasticity by inhibiting Ca2+ influx into neurons.[1]References
- Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Lee, A., Westenbroek, R.E., Haeseleer, F., Palczewski, K., Scheuer, T., Catterall, W.A. Nat. Neurosci. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









