The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hippocampus


Psychiatry related information on Hippocampus


High impact information on Hippocampus


Chemical compound and disease context of Hippocampus


Biological context of Hippocampus


Anatomical context of Hippocampus


Associations of Hippocampus with chemical compounds


Gene context of Hippocampus

  • The major phenotypic features of AS correlate with the loss of maternal-specific expression of Ube3a in hippocampus and cerebellum as revealed in the mouse model [36].
  • Even at low concentrations, brain-derived neurotrophic factor (BDNF) excited neurons in the hippocampus, cortex and cerebellum [37].
  • Our results suggest that BDNF may regulate LTP in developing and adult hippocampus by enhancing synaptic responses to tetanic stimulation [38].
  • The mutant APP(K670N,M671L) transgenic line, Tg2576, shows markedly elevated amyloid beta-protein (A beta) levels at an early age and, by 9-12 months, develops extracellular AD-type A beta deposits in the cortex and hippocampus [39].
  • In addition, rats overexpressing GLP-1R in the hippocampus show improved learning and memory [40].

Analytical, diagnostic and therapeutic context of Hippocampus


  1. Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Hogema, B.M., Gupta, M., Senephansiri, H., Burlingame, T.G., Taylor, M., Jakobs, C., Schutgens, R.B., Froestl, W., Snead, O.C., Diaz-Arrastia, R., Bottiglieri, T., Grompe, M., Gibson, K.M. Nat. Genet. (2001) [Pubmed]
  2. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Carrié, A., Jun, L., Bienvenu, T., Vinet, M.C., McDonell, N., Couvert, P., Zemni, R., Cardona, A., Van Buggenhout, G., Frints, S., Hamel, B., Moraine, C., Ropers, H.H., Strom, T., Howell, G.R., Whittaker, A., Ross, M.T., Kahn, A., Fryns, J.P., Beldjord, C., Marynen, P., Chelly, J. Nat. Genet. (1999) [Pubmed]
  3. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Simon, R.P., Swan, J.H., Griffiths, T., Meldrum, B.S. Science (1984) [Pubmed]
  4. The mGluR theory of fragile X mental retardation. Bear, M.F., Huber, K.M., Warren, S.T. Trends Neurosci. (2004) [Pubmed]
  5. Regenerative response in ischemic brain restricted by p21cip1/waf1. Qiu, J., Takagi, Y., Harada, J., Rodrigues, N., Moskowitz, M.A., Scadden, D.T., Cheng, T. J. Exp. Med. (2004) [Pubmed]
  6. Cholinergic-rich brain transplants reverse alcohol-induced memory deficits. Arendt, T., Allen, Y., Sinden, J., Schugens, M.M., Marchbanks, R.M., Lantos, P.L., Gray, J.A. Nature (1988) [Pubmed]
  7. Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? Scharfman, H.E., Maclusky, N.J. Trends Neurosci. (2005) [Pubmed]
  8. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Galvin, J.E., Uryu, K., Lee, V.M., Trojanowski, J.Q. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Stress-induced structural remodeling in hippocampus: prevention by lithium treatment. Wood, G.E., Young, L.T., Reagan, L.P., Chen, B., McEwen, B.S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  10. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., Medina, J.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  11. stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Shumyatsky, G.P., Malleret, G., Shin, R.M., Takizawa, S., Tully, K., Tsvetkov, E., Zakharenko, S.S., Joseph, J., Vronskaya, S., Yin, D., Schubart, U.K., Kandel, E.R., Bolshakov, V.Y. Cell (2005) [Pubmed]
  12. A distinct role for norepinephrine in memory retrieval. Murchison, C.F., Zhang, X.Y., Zhang, W.P., Ouyang, M., Lee, A., Thomas, S.A. Cell (2004) [Pubmed]
  13. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Tafti, M., Petit, B., Chollet, D., Neidhart, E., de Bilbao, F., Kiss, J.Z., Wood, P.A., Franken, P. Nat. Genet. (2003) [Pubmed]
  14. c-fos regulates neuronal excitability and survival. Zhang, J., Zhang, D., McQuade, J.S., Behbehani, M., Tsien, J.Z., Xu, M. Nat. Genet. (2002) [Pubmed]
  15. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W.L., Yen, S.H., Dickson, D.W., Davies, P., Hutton, M. Nat. Genet. (2000) [Pubmed]
  16. Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. Braun, J.S., Sublett, J.E., Freyer, D., Mitchell, T.J., Cleveland, J.L., Tuomanen, E.I., Weber, J.R. J. Clin. Invest. (2002) [Pubmed]
  17. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Valentino, K., Newcomb, R., Gadbois, T., Singh, T., Bowersox, S., Bitner, S., Justice, A., Yamashiro, D., Hoffman, B.B., Ciaranello, R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. Traumatic brain damage prevented by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline. Bernert, H., Turski, L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  19. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Gais, S., Born, J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. A single dose of kainic acid elevates the levels of enkephalins and activator protein-1 transcription factors in the hippocampus for up to 1 year. Bing, G., Wilson, B., Hudson, P., Jin, L., Feng, Z., Zhang, W., Bing, R., Hong, J.S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  21. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Arancio, O., Kiebler, M., Lee, C.J., Lev-Ram, V., Tsien, R.Y., Kandel, E.R., Hawkins, R.D. Cell (1996) [Pubmed]
  22. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Chun, J.J., Schatz, D.G., Oettinger, M.A., Jaenisch, R., Baltimore, D. Cell (1991) [Pubmed]
  23. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Werner, P., Voigt, M., Keinänen, K., Wisden, W., Seeburg, P.H. Nature (1991) [Pubmed]
  24. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Williams, J.H., Errington, M.L., Lynch, M.A., Bliss, T.V. Nature (1989) [Pubmed]
  25. Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Miyakawa, T., Yagi, T., Kitazawa, H., Yasuda, M., Kawai, N., Tsuboi, K., Niki, H. Science (1997) [Pubmed]
  26. PAK3 mutation in nonsyndromic X-linked mental retardation. Allen, K.M., Gleeson, J.G., Bagrodia, S., Partington, M.W., MacMillan, J.C., Cerione, R.A., Mulley, J.C., Walsh, C.A. Nat. Genet. (1998) [Pubmed]
  27. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J.M., Stalla, G.K., Blanquet, V., Steckler, T., Holsboer, F., Wurst, W. Nat. Genet. (1998) [Pubmed]
  28. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Tsien, J.Z., Huerta, P.T., Tonegawa, S. Cell (1996) [Pubmed]
  29. Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Abitbol, M., Menini, C., Delezoide, A.L., Rhyner, T., Vekemans, M., Mallet, J. Nat. Genet. (1993) [Pubmed]
  30. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Renfranz, P.J., Cunningham, M.G., McKay, R.D. Cell (1991) [Pubmed]
  31. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Colino, A., Halliwell, J.V. Nature (1987) [Pubmed]
  32. The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Weisskopf, M.G., Zalutsky, R.A., Nicoll, R.A. Nature (1993) [Pubmed]
  33. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Herron, C.E., Lester, R.A., Coan, E.J., Collingridge, G.L. Nature (1986) [Pubmed]
  34. Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. McCormick, D.A., Prince, D.A. Nature (1986) [Pubmed]
  35. GABA-mediated biphasic inhibitory responses in hippocampus. Alger, B.E., Nicoll, R.A. Nature (1979) [Pubmed]
  36. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Albrecht, U., Sutcliffe, J.S., Cattanach, B.M., Beechey, C.V., Armstrong, D., Eichele, G., Beaudet, A.L. Nat. Genet. (1997) [Pubmed]
  37. Neurotrophin-evoked rapid excitation through TrkB receptors. Kafitz, K.W., Rose, C.R., Thoenen, H., Konnerth, A. Nature (1999) [Pubmed]
  38. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., Lu, B. Nature (1996) [Pubmed]
  39. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Holcomb, L., Gordon, M.N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O'Campo, K., Hardy, J., Prada, C.M., Eckman, C., Younkin, S., Hsiao, K., Duff, K. Nat. Med. (1998) [Pubmed]
  40. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. During, M.J., Cao, L., Zuzga, D.S., Francis, J.S., Fitzsimons, H.L., Jiao, X., Bland, R.J., Klugmann, M., Banks, W.A., Drucker, D.J., Haile, C.N. Nat. Med. (2003) [Pubmed]
  41. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Vorel, S.R., Liu, X., Hayes, R.J., Spector, J.A., Gardner, E.L. Science (2001) [Pubmed]
  42. H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Atzori, M., Lau, D., Tansey, E.P., Chow, A., Ozaita, A., Rudy, B., McBain, C.J. Nat. Neurosci. (2000) [Pubmed]
  43. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Ishihara, T., Shigemoto, R., Mori, K., Takahashi, K., Nagata, S. Neuron (1992) [Pubmed]
  44. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Mattson, M.P., Rychlik, B., Chu, C., Christakos, S. Neuron (1991) [Pubmed]
  45. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Tang, L., Hung, C.P., Schuman, E.M. Neuron (1998) [Pubmed]
WikiGenes - Universities