The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Humic acid enhanced remediation of an emplaced diesel source in groundwater. 2. Numerical model development and application.

A pilot scale experiment for humic acid-enhanced remediation of diesel fuel, described in Part 1 of this series, is numerically simulated in three dimensions. Groundwater flow, enhanced solubilization of the diesel source, and reactive transport of the dissolved contaminants and humic acid carrier are solved with a finite element Galerkin approach. The model (BIONAPL) is calibrated by comparing observed and simulated concentrations of seven diesel fuel components (BTEX and methyl-, dimethyl- and trimethylnaphthalene) over a 1500-day monitoring period. Data from supporting bench scale tests were used to estimate contaminant-carrier binding coefficients and to simulate two-site sorption of the carrier to the aquifer sand. The model accurately reproduced the humic acid-induced 10-fold increase in apparent solubility of trimethylnaphthalene. Solubility increases on the order of 2-5 were simulated for methylnaphthalene and dimethylnaphthalene, respectively. Under the experimental and simulated conditions, the residual 500-ml diesel source was almost completely dissolved and degraded within 5 years. Without humic acid flushing, the simulations show complete source dissolution would take about six times longer.[1]

References

  1. Humic acid enhanced remediation of an emplaced diesel source in groundwater. 2. Numerical model development and application. Molson, J.W., Frind, E.O., Van Stempvoort, D.R., Lesage, S. J. Contam. Hydrol. (2002) [Pubmed]
 
WikiGenes - Universities