The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice.

The Notch signaling pathway is important in regulating formation and anterior-posterior patterning of somites in vertebrate embryos. Here we show that distinct segmentation defects are displayed in embryos mutant for the Notch pathway genes Notch1, Lunatic fringe (Lfng), Delta-like 1 (Dll1), and Delta-like 3 (Dll3). Lfng-deficient mice and Dll3-deficient mice exhibit very similar defects, and marker analysis suggests that progression of the segmentation clock is disrupted in Dll3 mutants. We also show that Radical fringe (Rfng)-deficient mice exhibit no obvious phenotypic defects. To assess whether the absence of a phenotype in Rfng-deficient mice was the result of functional redundancy with the Lfng gene, we generated Lfng/Rfng double homozygous mutant mice. These mice exhibit the skeletal defects normally observed in Lfng-deficient mice, but we detected no obvious synergistic or additive effects in the double mutant animals.[1]

References

 
WikiGenes - Universities