The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Somites

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Somites

  • Although it is not known whether the neuroblastoma cells are induced to differentiate or are killed by the embryonic tissue, the effect appeared to be specific because the tumor-forming ability of L1210 leukemia, B-16 melanoma, embryonal carcinoma 247, and a parietal yolk sac carcinoma was unaffected by somites [1].
  • Supplementing the medium with PGE2 at concentrations of 0.028-28.4 nM (hyperglycemic) or 28.4 nM (diabetic) significantly reduced the incidence of neural-tube defects and increased the number of somites, the morphological score, and the protein content [2].
  • Isolated cells expressing tyrosine hydroxylase (T-OH) immunoreactivity were initially detected in trigeminal (V) ganglion anlages as early as gestational Day 10.5 (E10.5; 18-22 somites) [3].
  • Later, RALDH-2 is transiently expressed in the undifferentiated somites and the optic vesicles, and more persistently along the lateral walls of the intraembryonic coelom and around the hindgut diverticulum [4].
 

High impact information on Somites

  • Instability of Hes7 protein is crucial for the somite segmentation clock [5].
  • Gene expression and phenotypic analyses in mutant embryos have implicated Fss in somite formation independent of Notch signaling, suggesting the presence of a new pathway regulating somite boundary formation [6].
  • Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites [6].
  • Smo and Shh/Ihh compound mutants have identical phenotypes: embryos fail to turn, arresting at somite stages with a small, linear heart tube, an open gut and cyclopia [7].
  • Smo and Shh/Ihh compound mutants have identical phenotypes: embryos fail to turn, arresting at somite stages with a small, linear heart tube, an open gut and cyclopia [8].
 

Chemical compound and disease context of Somites

 

Biological context of Somites

  • Homozygotes die before embryonic day 8.5, initiate gastrulation, but do not proceed to the formation of somites or to organogenesis [10].
  • Low levels of insulin gene transcripts are already present and restricted to the dorsal foregut endoderm at 20 somites, suggesting that pancreas- or insulin gene-specific transcriptional factors are present in this region before the onset of morphogenesis [11].
  • Pax9, a member of this transcription factor family, is expressed in somites, pharyngeal pouches, mesenchyme involved in craniofacial, tooth, and limb development, as well as other sites during mouse embryogenesis [12].
  • Characterization of a prerhombomeric enhancer from Hoxb4 reveals that a retinoic acid (RA) response element is an essential component of the early neural response to somite (s) signaling and can interpret positional information for setting the anterior boundary of expression [13].
  • Myogenin-lacZ transgenes trace the fate of embryonic cells that activate myogenin transcription and suggest that myogenic precursor cells that migrate from the somite myotome to the limb bud are committed to a myogenic fate in the absence of myogenin transcription [14].
 

Anatomical context of Somites

 

Associations of Somites with chemical compounds

  • Retinoic-acid-deficient embryos exhibit somite left-right asymmetry, but it remains unclear how retinoic acid mediates left-right patterning [20].
  • Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway [13].
  • The location of somite segmentation depends on opposing signalling gradients of retinoic acid (generated by retinaldehyde dehydrogenase-2; Raldh2) anteriorly and fibroblast growth factor (FGF; generated by Fgf8) posteriorly [20].
  • Ethanol significantly reduced the number of paired somites in mouse whole-embryo culture; this effect was prevented significantly by 100 pM NAP or by 100 pM P7A-NAP, but not by 100 pM I6A-NAP [21].
  • We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal [22].
 

Gene context of Somites

  • The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries [23].
  • Mesp2 initiates somite segmentation through the Notch signalling pathway [24].
  • Hence, PS1 is required for the spatiotemporal expression of Notch1 and Dll1, which are essential for somite segmentation and maintenance of somite borders [18].
  • Here we show that mice homozygous for a targeted mutation of the lunatic fringe (Lfng) gene, one of the mouse homologues of fringe, have defects in somite formation and anterior-posterior patterning of the somites [25].
  • Here we show that, in Gbx2-/- mutants, the earliest phenotype is a posterior expansion of the Otx2 domain during early somite stages [26].
 

Analytical, diagnostic and therapeutic context of Somites

References

  1. The neurula stage mouse embryo in control of neuroblastoma. Podesta, A.H., Mullins, J., Pierce, G.B., Wells, R.S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  2. PGE2 prevents anomalies induced by hyperglycemia or diabetic serum in mouse embryos. Goto, M.P., Goldman, A.S., Uhing, M.R. Diabetes (1992) [Pubmed]
  3. Transient expression of selected catecholaminergic traits in cranial sensory and dorsal root ganglia of the embryonic rat. Jonakait, G.M., Markey, K.A., Goldstein, M., Black, I.B. Dev. Biol. (1984) [Pubmed]
  4. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Niederreither, K., McCaffery, P., Dräger, U.C., Chambon, P., Dollé, P. Mech. Dev. (1997) [Pubmed]
  5. Instability of Hes7 protein is crucial for the somite segmentation clock. Hirata, H., Bessho, Y., Kokubu, H., Masamizu, Y., Yamada, S., Lewis, J., Kageyama, R. Nat. Genet. (2004) [Pubmed]
  6. Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nikaido, M., Kawakami, A., Sawada, A., Furutani-Seiki, M., Takeda, H., Araki, K. Nat. Genet. (2002) [Pubmed]
  7. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Zhang, X.M., Ramalho-Santos, M., McMahon, A.P. Cell (2001) [Pubmed]
  8. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Zhang, X.M., Ramalho-Santos, M., McMahon, A.P. Cell (2001) [Pubmed]
  9. The role of the visceral yolk sac in hyperglycemia-induced embryopathies in mouse embryos in vitro. Hunter, E.S., Sadler, T.W. Teratology (1992) [Pubmed]
  10. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Nasir, J., Floresco, S.B., O'Kusky, J.R., Diewert, V.M., Richman, J.M., Zeisler, J., Borowski, A., Marth, J.D., Phillips, A.G., Hayden, M.R. Cell (1995) [Pubmed]
  11. Insulin-promoter-factor 1 is required for pancreas development in mice. Jonsson, J., Carlsson, L., Edlund, T., Edlund, H. Nature (1994) [Pubmed]
  12. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Peters, H., Neubüser, A., Kratochwil, K., Balling, R. Genes Dev. (1998) [Pubmed]
  13. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Gould, A., Itasaki, N., Krumlauf, R. Neuron (1998) [Pubmed]
  14. Mapping of myogenin transcription during embryogenesis using transgenes linked to the myogenin control region. Cheng, T.C., Hanley, T.A., Mudd, J., Merlie, J.P., Olson, E.N. J. Cell Biol. (1992) [Pubmed]
  15. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Lufkin, T., Mark, M., Hart, C.P., Dollé, P., LeMeur, M., Chambon, P. Nature (1992) [Pubmed]
  16. Segmentation in the vertebrate nervous system. Keynes, R.J., Stern, C.D. Nature (1984) [Pubmed]
  17. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Burgess, R., Rawls, A., Brown, D., Bradley, A., Olson, E.N. Nature (1996) [Pubmed]
  18. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Wong, P.C., Zheng, H., Chen, H., Becher, M.W., Sirinathsinghji, D.J., Trumbauer, M.E., Chen, H.Y., Price, D.L., Van der Ploeg, L.H., Sisodia, S.S. Nature (1997) [Pubmed]
  19. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Cheng, T.C., Wallace, M.C., Merlie, J.P., Olson, E.N. Science (1993) [Pubmed]
  20. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Sirbu, I.O., Duester, G. Nat. Cell Biol. (2006) [Pubmed]
  21. Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity. Wilkemeyer, M.F., Chen, S.Y., Menkari, C.E., Brenneman, D.E., Sulik, K.K., Charness, M.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. Regulation of patched by sonic hedgehog in the developing neural tube. Marigo, V., Tabin, C.J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Kusumi, K., Sun, E.S., Kerrebrock, A.W., Bronson, R.T., Chi, D.C., Bulotsky, M.S., Spencer, J.B., Birren, B.W., Frankel, W.N., Lander, E.S. Nat. Genet. (1998) [Pubmed]
  24. Mesp2 initiates somite segmentation through the Notch signalling pathway. Takahashi, Y., Koizumi, K., Takagi, A., Kitajima, S., Inoue, T., Koseki, H., Saga, Y. Nat. Genet. (2000) [Pubmed]
  25. Defects in somite formation in lunatic fringe-deficient mice. Zhang, N., Gridley, T. Nature (1998) [Pubmed]
  26. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Millet, S., Campbell, K., Epstein, D.J., Losos, K., Harris, E., Joyner, A.L. Nature (1999) [Pubmed]
  27. Cytotactin expression in somites after dorsal neural tube and neural crest ablation in chicken embryos. Tan, S.S., Prieto, A.L., Newgreen, D.F., Crossin, K.L., Edelman, G.M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  28. Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Grapin-Botton, A., Bonnin, M.A., McNaughton, L.A., Krumlauf, R., Le Douarin, N.M. Development (1995) [Pubmed]
  29. Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin. Herrmann, H., Fouquet, B., Franke, W.W. Development (1989) [Pubmed]
  30. Hes6 regulates myogenic differentiation. Cossins, J., Vernon, A.E., Zhang, Y., Philpott, A., Jones, P.H. Development (2002) [Pubmed]
  31. Folic acid supplementation diminishes diabetes- and glucose-induced dysmorphogenesis in rat embryos in vivo and in vitro. Wentzel, P., Gäreskog, M., Eriksson, U.J. Diabetes (2005) [Pubmed]
 
WikiGenes - Universities