The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Formation kinetics and stability studies on the lanthanide complexes of 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid by capillary electrophoresis.

In this study, the kinetic behaviors of four lanthanide ions, Sm(3+), Dy(3+), Yb(3+) and Lu(3+), when mixed with a polyazamacrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA), were investigated by capillary electrophoresis (CE) in the pH range of 2.0-6. 0. At pH 2.0, the formation rate of DOTA-metal complex is extremely low as very little complex was detected after 5 days reaction, whereas almost no free DOTA was found in the mixture of metal ion and DOTA after 4 min at pH 6. 0. The second-order kinetic association rate constants of the four lanthanide ions chelates at pH 4.2 were calculated as 1.44 x 10(-2) mM(-1)min(-1), 5.20 x 10(-2) mM(-1)min(-1), 4.56 x 10(-2) mM(-1)min(-1) and 4.54 x 10(-2) mM(-1)min(-1) at 25 degrees C with CE, respectively. In addition, the stability constants of the four lanthanide ions with DOTA were determined by CE at pH 3.0 where approximately 80-90% of the metal ions were associated with DOTA at 25 degrees C. The measured stability constants (log K(f)) of the four DOTA-metal complexes were 23.36, 23.93, 23.39 and 23.06, respectively, and correlated well with published data obtained by different methods. The percentage of metal ion bound with DOTA was evaluated as a function of reactant concentration in pH 6.0 buffer. After adding excess strong acid (0.1 M HCl) to each solution of DOTA-metal was formed at pH 6.0, no released DOTA was detected after 24 h; thus, dissociation of these lanthanide complexes did not occur under strongly acidic conditions. The Ln(DOTA)(-) species for the four DOTA-metal complexes were characterized by electrospray ionization-mass spectroscopy (ESI-MS), and the results correlated with proposed structures.[1]

References

 
WikiGenes - Universities