The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Conformational analysis of a 4-hydroxyequilenin Guanine adduct using density functional theory.

Equilenin, a component of the drug Premarin (Wyeth), can be metabolized to a quinonoid, 4-hydroxyequilenin (4-OHEN). 4-OHEN can react with 2'-deoxynucleosides to form unusual cyclic adducts, among which 4-hydroxyequilenin-2'-deoxyguanosine (4-OHEN-dG) is the major product under physiological conditions. The structure and stereochemistry of one stereoisomer, 4-OHEN-dG1, has been obtained previously using electrospray mass spectrometry and NMR methods [Shen et al. (1997) J. Am. Chem. Soc. 119, 11126-11127]; however, details of the conformations around the linkage site have not yet been investigated. The objective of this paper was to determine the conformation at the five-membered ring linkage site for this adduct. We have carried out a computational investigation involving high level quantum mechanical geometry optimization using density functional theory (DFT) for the 4-hydroxyequilenin-guanine adduct (4-OHEN-G1). Our results reveal that there are three conformational families which differ in the puckering of the five-membered ring at the linkage site and in the cyclohexene-type A ring conformation. The overall structures of all three families are "V"-shaped; however, two are quite compact while the third is more open. The lowest energy structure contains a half chair-type cyclohexene A ring, while two structures whose energies are approximately 3-4 kcal/ mol higher are boat-type. Since the Watson-Crick hydrogen bonding edge of the modified guanine is obstructed by the formation of this bulky nonplanar adduct, it likely would reside in a groove of the DNA double helix.[1]

References

  1. Conformational analysis of a 4-hydroxyequilenin Guanine adduct using density functional theory. Yan, S., Wu, M., Ding, S., Geacintov, N.E., Broyde, S. Chem. Res. Toxicol. (2002) [Pubmed]
 
WikiGenes - Universities