The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hypothesis: a phospholipid translocase couples lateral and transverse bilayer asymmetries in dividing bacteria.

Cell division in bacteria such as Escherichia coli entails changes in the radii of curvature of the invaginating cytoplasmic membrane which culminate in rearrangements of its monolayers. Division therefore risks perturbing transverse and lateral asymmetries and compromising membrane integrity. This leads us to propose that a strong selective pressure exists for a phospholipid translocator that would transfer phospholipids across the cytoplasmic membrane so as to both demarcate the division site and mediate lipid composition during division. This translocase has an affinity for phospholipids with small headgroups and unsaturated acyl chains which it translocates so as to (1) generate changes in the radius of curvature, (2) facilitate septum formation, (3) minimise bilayer disruption during fusion and (4) prevent septum formation at old or inappropriate division sites. We discuss briefly possible candidates for this translocase including ABC transporters and proteins localised to the division site.[1]

References

  1. Hypothesis: a phospholipid translocase couples lateral and transverse bilayer asymmetries in dividing bacteria. Norris, V., Misevic, G., Delosme, J.M., Oshima, A. J. Mol. Biol. (2002) [Pubmed]
 
WikiGenes - Universities