The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular "compasses" and "gyroscopes." III. Dynamics of a phenylene rotor and clathrated benzene in a slipping-gear crystal lattice.

Samples of 1,4-bis(3,3,3-triphenylpropynyl)benzene 3 were prepared by Pd(0)-catalyzed coupling of 3,3,3-triphenylpropyne (1) and 1,4-diiodobenzene. The structure of compound 3 is such that the central phenylene can play the role of a gyroscope wheel, while the alkyne bond and trityl groups can act as an axle and shielding frameworks, respectively. Crystals grown from benzene and dichloromethane were characterized by X-ray diffraction, variable-temperature (13)C CPMAS NMR, quadrupolar echo solid-state (2)H NMR, and thermal analyses. The rotational dynamics of benzene molecules and phenylene groups were characterized in terms of 6-fold rotation and 2-fold flipping models, respectively. The possibility of a gearing mechanism between adjacent benzene molecules and phenylene groups suggested by the clathrate structure was investigated. However, it was found that 6-fold rotation of benzene molecules at 300 K occurs in the gigahertz regime (or higher) and 2-fold flipping of phenylene groups in the kilohertz range in a structure that can be described as a slipping-gear lattice. The rotational dynamics of the phenylene group in the solvent-free structure were remarkably similar to those in the clathrate, and both are among the fastest known for phenylene rotation in solids. The results presented here provide a valuable starting point for the design and analysis of crystalline solids with correlated molecular motions.[1]

References

 
WikiGenes - Universities