The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of hyaluronidase activity by alternative mRNA splicing.

Hyaluronidase is a hyaluronic acid-degrading endoglycosidase that is present in many toxins and the levels of which are elevated in cancer. Increased concentration of HYAL1-type hyaluronidase correlates with tumor progression and is a marker for grade (G) 2 or 3 bladder cancer. Using bladder tissues and cells, prostate cancer cells, and kidney tissues and performing reverse transcription-PCR, cDNA cloning, DNA sequencing, and in vitro translation, we identified splice variants of HYAL1 and HYAL3. HYAL1v1 variant lacks a 30-amino acid (aa) sequence (301-330) present in HYAL1 protein. HYAL1v1, HYAL1v2 (aa 183-435 present in HYAL1 wild type), HYAL1v3 (aa 1-207), HYAL1v4 (aa 260-435), and HYAL1v5 (aa 340-435) are enzymatically inactive and are expressed in normal tissues/cells and G1 bladder tumor tissues. However, HYAL1 wild type is expressed in G2/G3 tumors and in invasive tumor cells. Stable transfection and HYAL1v1-specific antibody confirmed that the HYAL1 sequence from aa 301 to 330 is critical for hyaluronidase activity. All tumor cells and tissues mainly express HYAL3 variants. HYAL3v1 lacks a 30-aa sequence (299-328) present in HYAL3 protein, that is homologous to the 30-aa HYAL1 sequence. HYAL3v1, HYAL3v2 (aa 251-417 present in HYAL3 wild type), and HYAL3v3 (aa 251-417, but lacking aa 299-328), are enzymatically inactive. Although splicing of a single independent exon generates HYAL1v1 and HYAL3v1, internal exon splicing generates the other HYAL1/ HYAL3 variants. These results demonstrate that alternative mRNA splicing controls cellular expression of enzymatically active hyaluronidase and may explain the elevated hyaluronidase levels in bladder/prostate cancer.[1]

References

  1. Regulation of hyaluronidase activity by alternative mRNA splicing. Lokeshwar, V.B., Schroeder, G.L., Carey, R.I., Soloway, M.S., Iida, N. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities