The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen.

Acquisition of metals such as iron, copper, and zinc by the yeast Saccharomyces cerevisiae is tightly regulated. High affinity uptake systems are induced under metal-limiting conditions to maintain an adequate supply of these essential nutrients. Low affinity uptake systems function when their substrates are in greater supply. The FET4 gene encodes a low affinity iron and copper uptake transporter. FET4 expression is regulated by several environmental factors. In this report, we describe the molecular mechanisms underlying this regulation. First, we found that FET4 expression is induced in iron-limited cells by the Aft1 iron-responsive transcriptional activator. Second, FET4 is regulated by zinc status via the Zap1 transcription factor. We present evidence that FET4 is a physiologically relevant zinc transporter and this provides a rationale for its regulation by Zap1. Finally, FET4 expression is regulated in response to oxygen by the Rox1 repressor. Rox1 attenuates activation by Aft1 and Zap1 in aerobic cells. Derepression of FET4 may allow the Fet4 transporter to play an even greater role in metal acquisition under anaerobic conditions. Thus, Fet4 is a multisubstrate metal ion transporter under combinatorial control by iron, zinc, and oxygen.[1]

References

 
WikiGenes - Universities