The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Interferon-beta from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner.

Interferon (IFN)-alpha and IFN-beta have been utilized in the treatment of melanoma as a form of cytokine therapy. While previous studies have demonstrated that melanocytes and melanoma cells produce a number of cytokines, it remains unclear whether or not melanocytes and melanoma cells per se produce IFN-alpha or IFN-beta. In the present study, we investigated the expression of IFN-alpha or IFN-beta in human melanocytes and five melanoma cell lines: G-361, C32TG, MMAc, MEWO and VMRC-MELG at both mRNA and protein levels. Both IFN-alpha and IFN-beta mRNA were detected in normal human melanocytes. Likewise, IFN-alpha mRNA was detected in all five melanoma cell lines. However, IFN-beta mRNA was only detected in one melanoma cell line, VMRC-MELG. When melanocytes and melanoma cells were treated with a potent IFN inducer, polyinosinic:polycytidylic acid (poly I:C), the mRNA expression of both IFN-alpha and IFN-beta was significantly upregulated. Poly I:C was not able to induce melanocytes or melanoma cells to produce detectable amounts of IFN-alpha protein, but able to induce a significant amount of IFN-beta in melanocytes and two of the melanoma cell lines: MMAc and VMRC-MELG. Moreover, similar to exogenous IFN-alpha and IFN-beta, poly I:C significantly inhibited the proliferation of all five melanoma cell lines. This suppressive effect was partially blocked by anti-IFN-beta antibody treatment in the IFN-beta-producing melanoma cell lines: MMAc and VMRC-MELG, but not in the non-IFN-beta-producing cell lines: G-361, C32TG and MEWO. Collectively, these studies have demonstrated for the first time that human melanocytes and melanoma cells produce IFN-beta. Furthermore, melanoma cells are capable of suppressing their own proliferation via secretion of endogenous IFN-beta. This finding may have important implications for melanoma therapy.[1]

References

 
WikiGenes - Universities