The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways.

Peroxynitrite, generated for example in inflammatory processes, is capable of nitrating and oxidizing biomolecules, implying a considerable impact on the integrity of cellular structures. Cells respond to stressful conditions by the activation of signaling pathways, including receptor tyrosine kinase-dependent pathways such as mitogen-activated protein kinases and the phosphoinositide-3-kinase/Akt pathway. Peroxynitrite affects signaling pathways by nitration as well as by oxidation: while nitration of tyrosine residues by peroxynitrite modulates signaling processes relying on tyrosine phosphorylation and dephosphorylation, oxidation of phosphotyrosine phosphatases may lead to an alteration in the tyrosine phosphorylation/dephosphorylation balance. The flavanol (-)-epicatechin is a potent inhibitor of tyrosine nitration and may be employed as a tool to distinguish signaling effects due to tyrosine nitration from those that are due to oxidation reactions.[1]

References

  1. Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Klotz, L.O., Schroeder, P., Sies, H. Free Radic. Biol. Med. (2002) [Pubmed]
 
WikiGenes - Universities