An approach to membrane protein structure without crystals.
The lactose permease of Escherichia coli catalyzes coupled translocation of galactosides and H(+) across the cell membrane. It is the best-characterized member of the Major Facilitator Superfamily, a related group of membrane proteins with 12 transmembrane domains that mediate transport of various substrates across cell membranes. Despite decades of effort and their functional importance in all kingdoms of life, no high-resolution structures have been solved for any member of this family. However, extensive biochemical, genetic, and biophysical studies on lactose permease have established its transmembrane topology, secondary structure, and numerous interhelical contacts. Here we demonstrate that this information is sufficient to calculate a structural model at the level of helix packing or better.[1]References
- An approach to membrane protein structure without crystals. Sorgen, P.L., Hu, Y., Guan, L., Kaback, H.R., Girvin, M.E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg