The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of the unfolding process of lipocalin-type prostaglandin D synthase.

We found that low concentrations of guanidine hydrochloride (GdnHCl, <0.75 M) or urea (<1.5 M) enhanced the enzyme activity of lipocalin-type prostaglandin (PG) D synthase (L-PGDS) maximally 2.5- and 1.6-fold at 0.5 M GdnHCl and 1 M urea, respectively. The catalytic constants in the absence of denaturant and in the presence of 0.5 M GdnHCl or 1 m urea were 22, 57, and 30 min(-1), respectively, and the K(m) values for the substrate, PGH(2), were 2.8, 8.3, and 2.3 microm, respectively, suggesting that the increase in the catalytic constant was mainly responsible for the activation of L-PGDS. The intensity of the circular dichroism (CD) spectrum at 218 nm, reflecting the beta-sheet content, was also increased by either denaturant in a concentration-dependent manner, with the maximum at 0.5 M GdnHCl or 1 M urea. By plotting the enzyme activities against the ellipticities at 218 nm of the CD spectra of L-PGDS in the presence or absence of GdnHCl or urea, we found two states in the reversible folding process of L-PGDS: one is an activity-enhanced state and the other, an inactive state. The NMR analysis of L-PGDS revealed that the hydrogen-bond network was reorganized to be increased in the activity-enhanced state formed in the presence of 0.5 M GdnHCl or 1 m urea and to be decreased but still remain in the inactive intermediate observed in the presence of 2 M GdnHCl or 4 M urea. Furthermore, binding of the nonsubstrate ligands, bilirubin or 13-cis-retinal, to L-PGDS changed from a multistate mode in the native form of L-PGDS to a simple two-state mode in the activity-enhanced form, as monitored by CD spectra of the bound ligands. Therefore, L-PGDS is a unique protein whose enzyme activity and ligand-binding property are biphasically altered during the unfolding process by denaturants.[1]

References

  1. Characterization of the unfolding process of lipocalin-type prostaglandin D synthase. Inui, T., Ohkubo, T., Emi, M., Irikura, D., Hayaishi, O., Urade, Y. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities