The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Circular Dichroism

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Circular Dichroism

 

High impact information on Circular Dichroism

 

Chemical compound and disease context of Circular Dichroism

 

Biological context of Circular Dichroism

 

Anatomical context of Circular Dichroism

 

Associations of Circular Dichroism with chemical compounds

  • Circular dichroism spectroscopy indicates that the extent of helicity of these peptides follows the order Ala greater than Leu greater than Met greater than Gln greater than Ile greater than Val greater than Ser greater than Thr greater than Asn greater than Gly [26].
  • Circular dichroism spectra suggest that the arginine-rich region of Tat is unstructured in the absence of RNA, becomes partially or fully structured upon binding, and induces a conformational change in the RNA [27].
  • Circular dichroism studies of renal ligandin revealed percent helical structure similar to hepatic ligandin and primary association contrasts were derived for BSP (10-6 M-1) and PAH, probenecid, and penicillin (10-3 M-1) [28].
  • Direct binding of glutathione-S-transferase P1-1 to deoxycholic acid was proven by circular dichroism and by immunoprecipitation [29].
  • Circular dichroism experiments indicated that both DNAs undergo conformational changes upon arginine binding and that the arginine guanidinium group alone is responsible for binding [30].
 

Gene context of Circular Dichroism

  • We show here using circular dichroism spectroscopy that RAP1 promotes the formation of one particular type of DNA quadruplex, parallel G4-DNA [31].
  • As previously described for intact TSP1, E3CaG2 bound Ca(2+) in a cooperative manner as assessed by equilibrium dialysis, and its circular dichroism spectrum was sensitive to the presence of Ca(2+) [32].
  • Circular dichroism results showed that Leu20 and Asp70 may serve to stabilize the overall fold, whereas residue 104 appears to play a role in the specific lipid binding and/or transfer activity of SCP2 [33].
  • When six of the negatively charged carboxylic acid residues are replaced by their cognate amides, reducing net negative charge to B3, but increasing helical propensity as assessed by circular dichroism, the peptide stimulates CFTR channel function, but does not inhibit [34].
  • Selective oxidation did not alter the alpha-helicity of lipid-free and lipid-associated apoA-I as assessed by circular dichroism, and the affinity for LCAT was comparable for reconstituted HDL containing apoA-I or apoA-I(+32) [35].
 

Analytical, diagnostic and therapeutic context of Circular Dichroism

References

  1. Acetyl coenzyme A carbosylase. Circular dichroism studies of Escherichia coli biotin carboxyl carrier protein. Fall, R.R., Glaser, M., Vagelos, P.R. J. Biol. Chem. (1976) [Pubmed]
  2. The conformation of T4 bacteriophage dihydrofolate reductase from circular dichroism. Compton, L.A., Mathews, C.K., Johnson, W.C. J. Biol. Chem. (1987) [Pubmed]
  3. Evaluation of secondary structure of OxlT, the oxalate transporter of Oxalobacter formigenes, by circular dichroism spectroscopy. Fu, D., Maloney, P.C. J. Biol. Chem. (1997) [Pubmed]
  4. Molecular architecture of a light-harvesting antenna. Quaternary interactions in the Synechococcus 6301 phycobilisome core as revealed by partial tryptic digestion and circular dichroism studies. Lundell, D.J., Glazer, A.N. J. Biol. Chem. (1983) [Pubmed]
  5. Effects of sulphate and urea on the stability and reversible unfolding of beta-lactamase from Staphylococcus aureus. Implications for the folding pathway of beta-lactamase. Mitchinson, C., Pain, R.H. J. Mol. Biol. (1985) [Pubmed]
  6. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Weiss, M.A., Ellenberger, T., Wobbe, C.R., Lee, J.P., Harrison, S.C., Struhl, K. Nature (1990) [Pubmed]
  7. Cooperative structural transition of PM2 DNA at high ionic strength and its dependence on DNA damages. Kuhnlein, U., Tsang, S.S., Edwards, J. Nature (1980) [Pubmed]
  8. A conformational isomer of bovine pancreatic trypsin inhibitor protein produced by refolding. States, D.J., Dobson, C.M., Karplus, M., Creighton, T.E. Nature (1980) [Pubmed]
  9. Kinetics of folding of the all-beta sheet protein interleukin-1 beta. Varley, P., Gronenborn, A.M., Christensen, H., Wingfield, P.T., Pain, R.H., Clore, G.M. Science (1993) [Pubmed]
  10. Attempts to mimic docking processes of the immune system: recognition-induced formation of protein multilayers. Müller, W., Ringsdorf, H., Rump, E., Wildburg, G., Zhang, X., Angermaier, L., Knoll, W., Liley, M., Spinke, J. Science (1993) [Pubmed]
  11. A conformational study of thioredoxin and its tryptic fragments. Reutimann, H., Straub, B., Luisi, P.L., Holmgren, A. J. Biol. Chem. (1981) [Pubmed]
  12. Circular dichroism investigation of Escherichia coli adenylate kinase. Monnot, M., Gilles, A.M., Girons, I.S., Michelson, S., Bârzu, O., Fermandjian, S. J. Biol. Chem. (1987) [Pubmed]
  13. Domain structure of the HSC70 cochaperone, HIP. Velten, M., Gomez-Vrielynck, N., Chaffotte, A., Ladjimi, M.M. J. Biol. Chem. (2002) [Pubmed]
  14. The iron-sulfur cluster composition of Escherichia coli nitrate reductase. Johnson, M.K., Bennett, D.E., Morningstar, J.E., Adams, M.W., Mortenson, L.E. J. Biol. Chem. (1985) [Pubmed]
  15. Magnetic circular dichroism and cobalt(II) binding equilibrium studies of Escherichia coli methionyl aminopeptidase. Larrabee, J.A., Leung, C.H., Moore, R.L., Thamrong-nawasawat, T., Wessler, B.S. J. Am. Chem. Soc. (2004) [Pubmed]
  16. A chemically synthesized Antennapedia homeo domain binds to a specific DNA sequence. Mihara, H., Kaiser, E.T. Science (1988) [Pubmed]
  17. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. Allendorf, M.D., Spira, D.J., Solomon, E.I. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  18. Expression and characterization of two pathogenic mutations in human electron transfer flavoprotein. Salazar, D., Zhang, L., deGala, G.D., Frerman, F.E. J. Biol. Chem. (1997) [Pubmed]
  19. Structure of Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe. Slupsky, C.M., Desautels, M., Huebert, T., Zhao, R., Hemmingsen, S.M., McIntosh, L.P. J. Biol. Chem. (2001) [Pubmed]
  20. Solution conformational analysis of the alpha-zein proteins of maize. Tatham, A.S., Field, J.M., Morris, V.J., I'Anson, K.J., Cardle, L., Dufton, M.J., Shewry, P.R. J. Biol. Chem. (1993) [Pubmed]
  21. Conjugated polyene fatty acids as membrane probes: preliminary characterization. Sklar, L.A., Hudson, B.S., Simoni, R.D. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  22. Evidence for a (triosephosphate isomerase-like) "catalytic loop" near the active site of glyoxalase I. Lan, Y., Lu, T., Lovett, P.S., Creighton, D.J. J. Biol. Chem. (1995) [Pubmed]
  23. Structural events during the refolding of an all beta-sheet protein. Samuel, D., Kumar, T.K., Balamurugan, K., Lin, W.Y., Chin, D.H., Yu, C. J. Biol. Chem. (2001) [Pubmed]
  24. Spectroscopic evidence for ligand-induced conformational change in NADP+:isocitrate dehydrogenase. Seery, V.L., Farrell, H.M. J. Biol. Chem. (1990) [Pubmed]
  25. A hybrid molecule resembling the epitope spectrum of grass pollen for allergy vaccination. Linhart, B., Hartl, A., Jahn-Schmid, B., Verdino, P., Keller, W., Krauth, M.T., Valent, P., Horak, F., Wiedermann, U., Thalhamer, J., Ebner, C., Kraft, D., Valenta, R. J. Allergy Clin. Immunol. (2005) [Pubmed]
  26. Side chain contributions to the stability of alpha-helical structure in peptides. Lyu, P.C., Liff, M.I., Marky, L.A., Kallenbach, N.R. Science (1990) [Pubmed]
  27. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Calnan, B.J., Biancalana, S., Hudson, D., Frankel, A.D. Genes Dev. (1991) [Pubmed]
  28. Structural and functional studies of ligandin, a major renal organic anion-binding protein. Kirsch, R., Fleischner, G., Kamisaka, K., Arias, I.M. J. Clin. Invest. (1975) [Pubmed]
  29. Glutathione-S-transferase P1-1 protects aberrant crypt foci from apoptosis induced by deoxycholic acid. Nobuoka, A., Takayama, T., Miyanishi, K., Sato, T., Takanashi, K., Hayashi, T., Kukitsu, T., Sato, Y., Takahashi, M., Okamoto, T., Matsunaga, T., Kato, J., Oda, M., Azuma, T., Niitsu, Y. Gastroenterology (2004) [Pubmed]
  30. Identification of two novel arginine binding DNAs. Harada, K., Frankel, A.D. EMBO J. (1995) [Pubmed]
  31. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. Giraldo, R., Suzuki, M., Chapman, L., Rhodes, D. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  32. Disulfide connectivity of recombinant C-terminal region of human thrombospondin 2. Misenheimer, T.M., Hahr, A.J., Harms, A.C., Annis, D.S., Mosher, D.F. J. Biol. Chem. (2001) [Pubmed]
  33. Structure-activity studies of human sterol carrier protein 2. Seedorf, U., Scheek, S., Engel, T., Steif, C., Hinz, H.J., Assmann, G. J. Biol. Chem. (1994) [Pubmed]
  34. A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. Xie, J., Adams, L.M., Zhao, J., Gerken, T.A., Davis, P.B., Ma, J. J. Biol. Chem. (2002) [Pubmed]
  35. Oxidation of methionine residues to methionine sulfoxides does not decrease potential antiatherogenic properties of apolipoprotein A-I. Panzenböck, U., Kritharides, L., Raftery, M., Rye, K.A., Stocker, R. J. Biol. Chem. (2000) [Pubmed]
  36. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Douangamath, A., Filipp, F.V., Klein, A.T., Barnett, P., Zou, P., Voorn-Brouwer, T., Vega, M.C., Mayans, O.M., Sattler, M., Distel, B., Wilmanns, M. Mol. Cell (2002) [Pubmed]
  37. Immunochemical detection of changes in chromatin subunits induced by histone H4 acetylation. Muller, S., Erard, M., Burggraf, E., Couppez, M., Sautière, P., Champagne, M., Van Regenmortel, M.H. EMBO J. (1982) [Pubmed]
  38. Actinomycin D-deoxynucleotide interactions: binding isotherms at the benzenoid and quinoid portions of the drug. Auer, H.E., Thompson, T.N. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  39. Evidence that a formyl-substituted iron porphyrin is the prosthetic group of myeloperoxidase: magnetic circular dichroism similarity of the peroxidase to Spirographis heme-reconstituted myoglobin. Sono, M., Bracete, A.M., Huff, A.M., Ikeda-Saito, M., Dawson, J.H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  40. Urea-dependent signal transduction by the virulence regulator UreR. Gendlina, I., Gutman, D.M., Thomas, V., Collins, C.M. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities