Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions.
OBJECTIVE: Despite studies implicating superoxide anion-producing oxidases in atherosclerosis, their characteristics, expression, and regulation in cells of lesions are poorly understood. We examined the following: (1) whether cytochrome b558-dependent NAD(P)H oxidase-phox peptides are expressed by intimal smooth muscle cells (iSMCs) and macrophages of human aortic atherosclerotic lesions and their regulation and (2) whether cytochrome b558-dependent NAD(P)H oxidase represents a major NAD(P)H oxidase in iSMCs. METHODS AND RESULTS: Using a combination of immunochemical and reverse transcription-polymerase chain reaction procedures, we demonstrate that p22(phox) and gp91(phox) (cytochrome b558) expression in normal intima was restricted to a quarter of the iSMCs. In fatty streaks, a similar fraction of iSMCs expressed cytochrome b558, whereas macrophages also expressed low levels of p47(phox) and p67(phox). In fibrofatty lesions, the majority of iSMCs expressed the cytochrome b558 subunits; p67(phox) was also detected. Macrophages and macrophage-derived foam cells expressed the 4 phox subunits that constitute superoxide-producing cytochrome b558-dependent NAD(P)H oxidase. These were upregulated by transforming growth factor-beta1 and interferon-gamma. Aortic lesions also expressed Thox1 and Nox4, and although their expression also increases with lesion severity, their expression is less frequent than that of gp91(phox). CONCLUSIONS: In human aortic fibrofatty lesions, a cytochrome b558-dependent NAD(P)H oxidase appears to be a major iSMC and macrophage oxidase whose expression is upregulated by cytokines.[1]References
- Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions. Kalinina, N., Agrotis, A., Tararak, E., Antropova, Y., Kanellakis, P., Ilyinskaya, O., Quinn, M.T., Smirnov, V., Bobik, A. Arterioscler. Thromb. Vasc. Biol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg