The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Tetrodotoxin block of A-fibre conduction and its effect on reflex responses evoked by electrical stimulation of the sural nerve in the decerebrated rabbit.

In the present study, we have investigated the viability of using tetrodotoxin (TTX) to induce selective blockade of myelinated fibre conduction in rabbit sural nerve, and explored some aspects of reflexes evoked by non-myelinated sural nerve afferents before and after application of TTX. In rabbits decerebrated under halothane-nitrous oxide anaesthesia, application of 30 nM TTX to the desheathed sural nerve completely blocked Abeta and Adelta waves of the compound action potential evoked by electrical stimulation of the nerve at 95 times threshold. The amplitude of C-fibre volleys evoked by these stimuli was reduced to a mean of 60 % of pre-treatment values. Reflexes evoked in medial gastrocnemius motoneurones by sural nerve stimulation showed corresponding changes after TTX treatment, with activation latency increasing from 5-7 ms in the control state to > 100 ms after TTX application. Temporal summation (wind up) in long latency reflexes (> 100 ms) was significantly enhanced after application of TTX. These data show that low concentrations of TTX can selectively block conduction in rabbit sural nerve A-fibres, providing a method for studying the central actions of non-myelinated C-fibres in isolation.[1]


WikiGenes - Universities