The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Learning, memory, and transcription factors.

Cognitive disorders in children have traditionally been described in terms of clinical phenotypes or syndromes, chromosomal lesions, metabolic disorders, or neuropathology. Relatively little is known about how these disorders affect the chemical reactions involved in learning and memory. Experiments in fruit flies, snails, and mice have revealed some highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. These can be divided into short-term memory storage through local changes in synapses, and long-term storage mediated by activation of transcription to translate new proteins that modify synaptic function. This review summarizes evidence that disruptions in these pathways are involved in human cognitive disorders, including neurofibromatosis type I, Coffin-Lowry syndrome, Rubinstein-Taybi syndrome, Rett syndrome, tuberous sclerosis-2, Down syndrome, X-linked alpha-thalassemia/mental retardation, cretinism, Huntington disease, and lead poisoning.[1]

References

  1. Learning, memory, and transcription factors. Johnston, M.V., Alemi, L., Harum, K.H. Pediatr. Res. (2003) [Pubmed]
 
WikiGenes - Universities