Recombination explains isochores in mammalian genomes.
The mouse Fxy gene was translocated into the highly recombining pseudoautosomal region comparatively recently in evolutionary terms. This event resulted in a rapid increase of GC content. We investigated the consequences of the translocation further by sequencing exons and introns of Fxy in various rodent species. We found that the DNA fragment newly located in a highly recombining context has acquired every property of a GC-rich isochore, namely increased GC content (especially at the third codon positions of exons), shorter introns and high density of minisatellites. These results strongly suggest that recombination is the primary determinant of the isochore organization of mammalian genomes.[1]References
- Recombination explains isochores in mammalian genomes. Montoya-Burgos, J.I., Boursot, P., Galtier, N. Trends Genet. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg