The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impact of DNA ligase IV on the fidelity of end joining in human cells.

A DNA ligase IV (LIG4)-null human pre-B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error-prone DNA ligase IV-independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demonstrates that residual DNA ligase IV activity, which is sufficient to promote efficient end joining, nevertheless can result in decreased fidelity of rejoining. Thus, DNA ligase IV is an important factor influencing the fidelity of end joining in vivo. The LIG4-defective cell lines also showed impaired end joining in an in vitro assay using cell-free extracts. Elevated degradation of the terminal nucleotide was observed in a LIG4-defective line, and addition of the DNA ligase IV-XRCC4 complex restored end protection. End protection by DNA ligase IV was not dependent upon ligation. Finally, using purified proteins, we demonstrate that DNA ligase IV-XRCC4 is able to protect DNA ends from degradation by T7 exonuclease. Thus, the ability of DNA ligase IV-XRCC4 to protect DNA ends may contribute to the ability of DNA ligase IV to promote accurate rejoining in vivo.[1]

References

  1. Impact of DNA ligase IV on the fidelity of end joining in human cells. Smith, J., Riballo, E., Kysela, B., Baldeyron, C., Manolis, K., Masson, C., Lieber, M.R., Papadopoulo, D., Jeggo, P. Nucleic Acids Res. (2003) [Pubmed]
 
WikiGenes - Universities