Experimental prediction of the natural evolution of antibiotic resistance.
The TEM family of beta-lactamases has evolved to confer resistance to most of the beta-lactam antibiotics, but not to cefepime. To determine whether the TEM beta-lactamases have the potential to evolve cefepime resistance, we evolved the ancestral TEM allele, TEM-1, in vitro and selected for cefepime resistance. After four rounds of mutagenesis and selection for increased cefepime resistance each of eight independent populations reached a level equivalent to clinical resistance. All eight evolved alleles increased the level of cefepime resistance by a factor of at least 32, and the best allele improved by a factor of 512. Sequencing showed that alleles contained from two to six amino acid substitutions, many of which were shared among alleles, and that the best allele contained only three substitutions.[1]References
- Experimental prediction of the natural evolution of antibiotic resistance. Barlow, M., Hall, B.G. Genetics (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg