The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Development of novel decoy oligonucleotides: advantages of circular dumb-bell decoy.

The inhibition of specific transcription regulatory proteins is a novel approach to regulate gene expression. The transcriptional activities of DNA binding proteins can be inhibited by the use of double-stranded oligonucleotides (ODNs) that compete for binding to their specific target sequences in promoters and enhancers. Transfection of this cis-element double-stranded ODN, referred to as decoy ODN, has been reported to be a powerful tool that provides a new class of anti-gene strategies to gene therapy and permits examination of specific gene regulation. We have demonstrated the usefulness of this decoy ODN strategy in animal models of restenosis, myocardial infarction, glomerulonephritis and rheumatoid arthritis. However, one of the major limitations of decoy ODN technology is the rapid degradation of phosphodiester ODNs by intracellular nucleases. To date, several different types of double-stranded decoy ODNs have been developed to overcome this issue. Circular dumb-bell (CD) double-stranded decoy ODNs that were developed to resolve this issue have attracted a high level of interest. In this review, the applications of decoy ODN strategy and the advantages of modified CD double-stranded decoy ODNs will be discussed.[1]

References

  1. Development of novel decoy oligonucleotides: advantages of circular dumb-bell decoy. Tomita, N., Tomita, T., Yuyama, K., Tougan, T., Tajima, T., Ogihara, T., Morishita, R. Curr. Opin. Mol. Ther. (2003) [Pubmed]
 
WikiGenes - Universities