The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structural changes in profilin accompany its binding to phosphatidylinositol, 4,5-bisphosphate.

The effect on the structure of profilin of phosphatidylinositol 4,5-bisphosphate (PIP2) binding was probed by fluorescence and circular dichroism (CD) spectroscopy. Fluorescence of Trp3 and Trp31 of profilin at 292 nm showed a linear decrease in solution emission at 340 nm as PIP2/profilin was increased from 0 to 80:1, apparently due to a static quenching mechanism involving formation of a nonfluorescent PIP2/profilin complex. CD spectra revealed an increase of up to 3.3-fold in the molar ellpticity at 222 nm for profilin as it binds PIP2, as well as changes in the Cotton effect between 250 and 310 nm. These results are consistent with a possible increase in the alpha-helix content of profilin triggered by the binding of PIP2.[1]


  1. Structural changes in profilin accompany its binding to phosphatidylinositol, 4,5-bisphosphate. Raghunathan, V., Mowery, P., Rozycki, M., Lindberg, U., Schutt, C. FEBS Lett. (1992) [Pubmed]
WikiGenes - Universities