The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex.

We investigated the effect of zonisamide, a new antiepileptic drug, on voltage-dependent Ca2+ currents in cultured neurons of rat cerebral cortex. Whole-cell voltage-clamp recordings demonstrated at least two distinct voltage-dependent Ca2+ currents: (1) a low-threshold, rapidly inactivating component, T-type Ca2+ current, which is sensitive to 100 microM Ni2+, and (2) a high-threshold, slowly inactivating (long-lasting) component, L-type Ca2+ current. Zonisamide, a new anticonvulsant effective against maximal electroshock (MES) seizures in mice reduced T-type Ca2+ current in a dose-dependent manner. The mean percentage of reduction was 59.5 +/- 7.2% at 500 microM, but zonisamide had no effect on L-type Ca2+ current. A methylated analog of zonisamide, which is ineffective against MES seizures in mice, was tested at a concentration of 500 microM, and reduced neither T-type nor L-type Ca2+ current. These findings suggest that the effects of zonisamide against MES seizures might occur through the reduction of T-type Ca2+ current. Because drugs that are effective against MES seizures are thought to prevent seizure discharge spread, T-type Ca2+ channels could underlie a cellular mechanism of spreading activity in epileptic seizures.[1]

References

  1. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Suzuki, S., Kawakami, K., Nishimura, S., Watanabe, Y., Yagi, K., Seino, M., Miyamoto, K. Epilepsy Res. (1992) [Pubmed]
 
WikiGenes - Universities