Dietary restriction of calcium, phosphorus, and vitamin D elicits differential regulation of the mRNAs for avian intestinal calbindin-D28k and the 1,25-dihydroxyvitamin D3 receptor.
We investigated the regulation of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]-induced calbindin-D28k (CaBP) and of the vitamin D receptor ( VDR) by evaluating CaBP protein, CaBP mRNA, and VDR mRNA under conditions of altered intake of vitamin D, calcium, or phosphorus. Chickens were maintained for 10 days on one of four diets: vitamin D-deficient, normal (1.0% Ca and 1.1% P), low calcium (0.1% Ca and 1.2% P), and low phosphorus (1.1% Ca and 0.3% P). CaBP was undetectable in D-deficient duodena and was elevated above normal values by low-calcium ( 3.1-fold) and low-phosphorus (2.3-fold) intake. Contradictory to published data, we observed a correlation between CaBP protein and mRNA levels in that the CaBP mRNA was absent in D-deficient intestine and augmented threefold and twofold in low-calcium and low-phosphate duodena, respectively. In contrast, VDR mRNA concentrations were identical in vitamin D-deficient and normal duodena, implying that intestinal VDR is not dependent upon 1,25-(OH)2D3 for basal expression. Chickens fed a low-phosphorus diet displayed a twofold increase in VDR mRNA, but those fed a low-calcium diet exhibited a dramatic decrease in VDR mRNA. These data show that CaBP mRNA and protein levels are modulated in a tightly coupled fashion, and they are consistent with previous conclusions that augmented circulating 1,25-(OH)2D3 stimulates CaBP expression when dietary calcium or phosphorus is limiting. However, a more complex regulation of VDR expression occurs in that low-phosphorus restriction enhances VDR mRNA levels, possibly via increased circulating 1,25-(OH)2D3. Conversely, reduced dietary calcium diminishes VDR mRNA despite increased circulating 1,25-(OH)2D3, indicating that another factor, such as parathyroid hormone, is a predominant downregulator of VDR.[1]References
- Dietary restriction of calcium, phosphorus, and vitamin D elicits differential regulation of the mRNAs for avian intestinal calbindin-D28k and the 1,25-dihydroxyvitamin D3 receptor. Meyer, J., Fullmer, C.S., Wasserman, R.H., Komm, B.S., Haussler, M.R. J. Bone Miner. Res. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg