Structural organization and stability of a thermoresistant domain generated by in vivo hydrolysis of the alpha-crystallin B chain from calf lens.
A protein fragment (M(r) approximately 9000) isolated from the cortex of nonpathological calf lenses has been structurally characterized. The polypeptide structure was well organized (39% alpha-helix, 33% beta-structure, and 28% remainder) according to the far-ultraviolet circular dichroism. The fluorescence was heterogeneous for the presence of two tryptophan classes. Structure perturbation by pH and denaturant revealed cooperative structural transitions which are characteristics of a globular organization. A single-step unfolding curve induced by Gdn-HCl (midpoint = 1.38 M Gdn-HCl) was monitored by emission maximum shift as well as by far-ultraviolet circular dichroism. This transition was analyzed as a two-state process. The standard free energy of unfolding in the absence of the denaturant, delta Go (H2O), was found to be 10.80 +/- 0.25 kJ/mol at 20 degrees C and pH 7. 4. The fragment also shows an unusual thermal resistance. Its structure was unperturbed up to 90 degrees C according to the fluorescence and dichroism. This last property, its peculiar amino acid composition, and the sequence of a small segment are shared, among crystallins, only with the N-terminal region of the alpha-crystallin B chain. A search for proteolysis sites along the alpha-crystallin B chain sequence revealed that it possesses specific points for proteinase attack. These sites are particularly exposed and clustered in a very flexible region in the middle of the protein sequence. They are also well represented in the C-terminal extension of the molecule while a few are buried in the N-terminal region.(ABSTRACT TRUNCATED AT 250 WORDS)[1]References
- Structural organization and stability of a thermoresistant domain generated by in vivo hydrolysis of the alpha-crystallin B chain from calf lens. Russo, G., Vincenti, D., Ragone, R., Stiuso, P., Colonna, G. Biochemistry (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg