The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Optimax     (2S)-2-amino-3-(1H-indol-3- yl)propanoic acid

Synonyms: Pacitron, Tryptan, tryptacin, Lyphan, trofan, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lyphan


Psychiatry related information on Lyphan


High impact information on Lyphan


Chemical compound and disease context of Lyphan


Biological context of Lyphan


Anatomical context of Lyphan


Associations of Lyphan with other chemical compounds

  • A mutation resulting in the replacement of tryptophan by arginine at position 64 (Trp64Arg) was detected by an analysis of restriction-fragment-length polymorphisms with the use of the endonuclease BstNl, which discriminates between the normal and mutant sequences [27].
  • But some missense mutations, for example ones in which arginine is replaced by histidine at residue at 117 (R117H; 0.8%), tryptophan at 334 (0.4%), or proline at 347 (0.5%), are associated with milder disease [28].
  • Pulse-probe transient Raman spectroscopy, with probe excitation at 230 nanometers, reveals changes in signals arising from tyrosine and tryptophan residues of the hemoglobin molecule as it moves from the relaxed (R) to the tense (T) state after photodeligation [29].
  • Both of his C kappa genes had a single point mutation, resulting in the loss of the invariant tryptophan from one allele and of an invariant cysteine from the other allele [30].
  • Lysine codons and lysine- and tryptophan-encoding oligonucleotides were introduced at several positions into a 19-kilodalton zein complementary DNA by oligonucleotide-mediated mutagenesis [31].

Gene context of Lyphan


Analytical, diagnostic and therapeutic context of Lyphan


  1. Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli. Farnham, P.J., Greenblatt, J., Platt, T. Cell (1982) [Pubmed]
  2. Tryptophan-induced eosinophilia-myalgia syndrome. Medsger, T.A. N. Engl. J. Med. (1990) [Pubmed]
  3. Scleroderma, fasciitis, and eosinophilia associated with the ingestion of tryptophan. Silver, R.M., Heyes, M.P., Maize, J.C., Quearry, B., Vionnet-Fuasset, M., Sternberg, E.M. N. Engl. J. Med. (1990) [Pubmed]
  4. L-tryptophan in drug-induced movement disorders with insomnia. Sandyk, R., Consroe, P.F., Iacono, R.P. N. Engl. J. Med. (1986) [Pubmed]
  5. AIDS dementia may be linked to metabolite of tryptophan. Cotton, P. JAMA (1990) [Pubmed]
  6. Relapse of depression after rapid depletion of tryptophan. Smith, K.A., Fairburn, C.G., Cowen, P.J. Lancet (1997) [Pubmed]
  7. Sleep disturbances and tryptophan in patients with Alzheimer's disease. Widner, B., Ledochowski, M., Fuchs, D. Lancet (2000) [Pubmed]
  8. No allelic association between bipolar affective disorder and the tryptophan hydroxylase gene. McQuillin, A., Lawrence, J., Kalsi, G., Chen, A., Gurling, H., Curtis, D. Arch. Gen. Psychiatry (1999) [Pubmed]
  9. Effects of tryptophan depletion on drug-free patients with seasonal affective disorder during a stable response to bright light therapy. Neumeister, A., Praschak-Rieder, N., Besselmann, B., Rao, M.L., Glück, J., Kasper, S. Arch. Gen. Psychiatry (1997) [Pubmed]
  10. Advancing our knowledge in biochemistry, genetics, and microbiology through studies on tryptophan metabolism. Yanofsky, C. Annu. Rev. Biochem. (2001) [Pubmed]
  11. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Huang, X., Holden, H.M., Raushel, F.M. Annu. Rev. Biochem. (2001) [Pubmed]
  12. Tetrahydropterin-dependent amino acid hydroxylases. Fitzpatrick, P.F. Annu. Rev. Biochem. (1999) [Pubmed]
  13. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Kielkopf, C.L., Rodionova, N.A., Green, M.R., Burley, S.K. Cell (2001) [Pubmed]
  14. Subunit communication in the anthranilate synthase complex from Salmonella typhimurium. Caligiuri, M.G., Bauerle, R. Science (1991) [Pubmed]
  15. Monensin and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema. Hammond, A.C., Carlson, J.R., Breeze, R.G. Science (1978) [Pubmed]
  16. Escherichia coli tryptophan repressor binds multiple sites within the aroH and trp operators. Kumamoto, A.A., Miller, W.G., Gunsalus, R.P. Genes Dev. (1987) [Pubmed]
  17. Mutations in the precore region of hepatitis B virus DNA in patients with fulminant and severe hepatitis. Omata, M., Ehata, T., Yokosuka, O., Hosoda, K., Ohto, M. N. Engl. J. Med. (1991) [Pubmed]
  18. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Bender, J., Fink, G.R. Cell (1995) [Pubmed]
  19. An investigation of the cause of the eosinophilia-myalgia syndrome associated with tryptophan use. Belongia, E.A., Hedberg, C.W., Gleich, G.J., White, K.E., Mayeno, A.N., Loegering, D.A., Dunnette, S.L., Pirie, P.L., MacDonald, K.L., Osterholm, M.T. N. Engl. J. Med. (1990) [Pubmed]
  20. Initial hydrophobic collapse in the folding of barstar. Agashe, V.R., Shastry, M.C., Udgaonkar, J.B. Nature (1995) [Pubmed]
  21. Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes. Hedges, R.W., Jacob, A.E., Crawford, I.P. Nature (1977) [Pubmed]
  22. Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Diamond, A., Dudock, B., Hatfield, D. Cell (1981) [Pubmed]
  23. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Uyttenhove, C., Pilotte, L., Théate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T., Van den Eynde, B.J. Nat. Med. (2003) [Pubmed]
  24. RNA editing in wheat mitochondria results in the conservation of protein sequences. Gualberto, J.M., Lamattina, L., Bonnard, G., Weil, J.H., Grienenberger, J.M. Nature (1989) [Pubmed]
  25. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Bedwell, D.M., Kaenjak, A., Benos, D.J., Bebok, Z., Bubien, J.K., Hong, J., Tousson, A., Clancy, J.P., Sorscher, E.J. Nat. Med. (1997) [Pubmed]
  26. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Nicholson, L.B., Greer, J.M., Sobel, R.A., Lees, M.B., Kuchroo, V.K. Immunity (1995) [Pubmed]
  27. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. Clément, K., Vaisse, C., Manning, B.S., Basdevant, A., Guy-Grand, B., Ruiz, J., Silver, K.D., Shuldiner, A.R., Froguel, P., Strosberg, A.D. N. Engl. J. Med. (1995) [Pubmed]
  28. Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Sheppard, D.N., Rich, D.P., Ostedgaard, L.S., Gregory, R.J., Smith, A.E., Welsh, M.J. Nature (1993) [Pubmed]
  29. Nanosecond dynamics of the R-->T transition in hemoglobin: ultraviolet Raman studies. Rodgers, K.R., Spiro, T.G. Science (1994) [Pubmed]
  30. Molecular defects in a human immunoglobulin kappa chain deficiency. Stavnezer-Nordgren, J., Kekish, O., Zegers, B.J. Science (1985) [Pubmed]
  31. Aggregation of lysine-containing zeins into protein bodies in Xenopus oocytes. Wallace, J.C., Galili, G., Kawata, E.E., Cuellar, R.E., Shotwell, M.A., Larkins, B.A. Science (1988) [Pubmed]
  32. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Munn, D.H., Sharma, M.D., Baban, B., Harding, H.P., Zhang, Y., Ron, D., Mellor, A.L. Immunity (2005) [Pubmed]
  33. Identification of a novel common genetic risk factor for lumbar disk disease. Paassilta, P., Lohiniva, J., Göring, H.H., Perälä, M., Räinä, S.S., Karppinen, J., Hakala, M., Palm, T., Kröger, H., Kaitila, I., Vanharanta, H., Ott, J., Ala-Kokko, L. JAMA (2001) [Pubmed]
  34. CTLA-4-Ig regulates tryptophan catabolism in vivo. Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P., Belladonna, M.L., Bianchi, R., Fioretti, M.C., Puccetti, P. Nat. Immunol. (2002) [Pubmed]
  35. Modulation of tryptophan catabolism by regulatory T cells. Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., Alegre, M.L., Puccetti, P. Nat. Immunol. (2003) [Pubmed]
  36. Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+. Draetta, G., Brizuela, L., Potashkin, J., Beach, D. Cell (1987) [Pubmed]
  37. In vitro suppression of UGA codons in a mitochondrial mRNA. De Ronde, A., Van Loon, A.P., Grivell, L.A., Kohli, J. Nature (1980) [Pubmed]
  38. Genetic engineering. Tryptophan under suspicion. Gershon, D. Nature (1990) [Pubmed]
WikiGenes - Universities