The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Local adaptation of an anuran amphibian to osmotically stressful environments.

Water salinity is an intense physiological stress for amphibians. However, some species, such as Bufo calamita, breed in both brackish and freshwater environments. Because selection under environmentally stressful conditions can promote local adaptation of populations, we examined the existence of geographic variation in water salinity tolerance among B. calamita populations from either fresh or brackish water ponds in Southern Spain. Comparisons were made throughout various ontogenetic stages. A combination of field transplant and common garden experiments showed that water salinity decreased survival probability of individuals in all populations, prolonged their larval period, and reduced their mass at metamorphosis. However, significant population x salinity interactions indicated that the population native to brackish water (Saline) had a higher salinity tolerance than the freshwater populations, suggesting local adaptation. Saline individuals transplanted to freshwater environments showed similar survival probabilities, length of larval period, and mass at metamorphosis than those native to freshwater. This indicates that increased tolerance to osmotic stress does not imply a loss of performance in freshwater, at least during the larval and juvenile phases. Despite the adaptive process apparently undergone by Saline, all populations still shared the same upper limit of embryonic stress tolerance (around 10 g/l), defining a window of salinity range within which selection can act. Significant differences in embryonic and larval survival in brackish water among sibships for all populations suggest the existence of a genetic basis for the osmotic tolerance.[1]

References

 
WikiGenes - Universities