The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bufonidae


High impact information on Bufonidae

  • Amphibians of the family Bufonidae contain high levels of skin compounds that both inhibit Na+- and K+-dependent adenosinetriphosphatase and antagonize the binding of ouabain to the enzyme [6].
  • In addition, kallikrein-like enzyme activity was discovered in the urinary bladder or skin of Bufo marinus toads and this activity was also inhibited by amiloride [7].
  • Studies were thus carried out to purify and characterize the RyR in stomach smooth muscle cells from the toad Bufo marinus [8].
  • Guanylate cyclase from rod photoreceptors of amphibian (toad, Bufo marinus, and frog, Rana catesbeiana) and bovine retinas was solubilized and purified by a single chromatography step on a GTP-agarose column [9].
  • This hypothesis was tested in preparations utilizing the toad (Bufo marinus) eye and purified, initially ligand-free IRBP obtained from the bovine eye [10].

Chemical compound and disease context of Bufonidae


Biological context of Bufonidae


Anatomical context of Bufonidae


Associations of Bufonidae with chemical compounds

  • Hydrin 2 has been detected in several Ranidae (R. esculenta, Rana temporaria, Rana pipiens) and Bufonidae (Bufo bufo, Bufo ictericus) and appears to have a large distribution in terrestrial or semiaquatic anurans [25].
  • Hybrid pumps containing the transfected cardiotonic steroid-resistant alpha 1 subunit of Bufo marinus were also stimulated by aldosterone (2.5 h) [26].
  • The eggs of Xenopus laevis and Bufo bufo japonicus matured in vitro by progesterone were denuded and activated by electrical shock or pricking, and their diameters were determined periodically until the postactivation time equivalent to the 8- to 16-cell stage [27].
  • We examined the effect of the local anesthetic tetracaine on the Ca(2+)-blockable, poorly selective cation channels in the isolated skin of Rana temporaria and the urinary bladder of Bufo marinus using noise analysis and microelectrode impalements [28].
  • To test this hypothesis, measurements of active sodium transport and passive water and urea fluxes were made in hemibladders isolated from the Dominican toad, Bufo marinus [29].

Gene context of Bufonidae

  • In conclusion, the results obtained indicate a possible role for CRF in Bufo arenarum metamorphosis [30].
  • On the other hand, TRH, GnRH and GHRH were inactive in stimulating growth or metamorphosis of Bufo arenarum [30].
  • The cDNA sequence of a toad (Bufo marinus) GH was determined to facilitate maximum parsimony analysis of GH sequences [31].
  • Immunocytochemical and morphometric study on the changes of TSH, PRL, GH and ACTH cells during the development of Bufo arenarum [32].
  • Identification of a fourth opioid core sequence in a prodynorphin cDNA cloned from the brain of the amphibian, Bufo marinus: deciphering the evolution of prodynorphin and proenkephalin [33].

Analytical, diagnostic and therapeutic context of Bufonidae


  1. Amphibian neurotensin (NT) is not xenopsin (XP): dual presence of NT-like and XP-like peptides in various amphibia. Carraway, R., Ruane, S.E., Feurle, G.E., Taylor, S. Endocrinology (1982) [Pubmed]
  2. Stimulation of phosphoinositides by agents that stimulate proton secretion in toad urinary bladder. Frazier, L.W. Proc. Soc. Exp. Biol. Med. (1993) [Pubmed]
  3. A new function for lactate in the toad Bufo marinus. Pörtner, H.O., Branco, L.G., Malvin, G.M., Wood, S.C. J. Appl. Physiol. (1994) [Pubmed]
  4. Acid-base regulation and blood gases in the anuran amphibian, Bufo marinus, during environmental hypercapnia. Boutilier, R.G., Heisler, N. J. Exp. Biol. (1988) [Pubmed]
  5. Baroreceptor control of heart rate in the awake toad: peripheral autonomic effectors and arterial baroreceptor areas. Bianchi-da-Silva, L.M., Menescal-de-Oliveira, L., Hoffmann, A. J. Auton. Nerv. Syst. (2000) [Pubmed]
  6. Widespread occurrence in frogs and toads of skin compounds interacting with the ouabain site of Na+, K+-ATPase. Flier, J., Edwards, M.W., Daly, J.W., Myers, C.W. Science (1980) [Pubmed]
  7. Amiloride inhibits mammalian renal kallikrein and a kallikrein-like enzyme from toad bladder and skin. Margolius, H.S., Chao, J. J. Clin. Invest. (1980) [Pubmed]
  8. Evidence for a Ca(2+)-gated ryanodine-sensitive Ca2+ release channel in visceral smooth muscle. Xu, L., Lai, F.A., Cohn, A., Etter, E., Guerrero, A., Fay, F.S., Meissner, G. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Polymorphism in purified guanylate cyclase from vertebrate rod photoreceptors. Hayashi, F., Yamazaki, A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  10. Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors. Okajima, T.I., Pepperberg, D.R., Ripps, H., Wiggert, B., Chader, G.J. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  11. Comparison of dehydration and angiotensin II-stimulated cutaneous drinking in toads, Bufo punctatus. Goldstein, J., Hoff, K., Hillyard, S.D. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2003) [Pubmed]
  12. Effect of exogenously applied polyamines on malathion toxicity in the toad Bufo arenarum Hensel. Venturino, A., Gauna, L.E., Bergoc, R.M., Pechen de D'Angelo, A.M. Arch. Environ. Contam. Toxicol. (1992) [Pubmed]
  13. Effect of the dry-cold season dormancy on the tonic and phasic neural control of heart rate in the toad, Bufo paracnemis. Hoffmann, A., Romero, S.M. J. Exp. Zool. (2000) [Pubmed]
  14. Protective action of ions against cadmium toxicity to young Bufo arenarum tadpoles. Muiño, C.V., Ferrari, L., Salibián, A. Bulletin of environmental contamination and toxicology. (1990) [Pubmed]
  15. Cellular electrophysiologic effects of vertebrate digitalis-like substances. Kieval, R.S., Butler, V.P., Derguini, F., Bruening, R.C., Rosen, M.R. J. Am. Coll. Cardiol. (1988) [Pubmed]
  16. Amino acid sequence of the major form of toad liver glutathione transferase. Bucciarelli, T., Sacchetta, P., Amicarelli, F., Petruzzelli, R., Melino, S., Rotilio, D., Celli, N., Di Ilio, C. Int. J. Biochem. Cell Biol. (2002) [Pubmed]
  17. Structural analysis of oligosaccharide-alditols released by reductive beta-elimination from oviducal mucins of Bufo bufo: characterization of the carbohydrate sequence Gal(alpha1-3)GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal. Morelle, W., Strecker, G. Glycobiology (1997) [Pubmed]
  18. Influence of thyroid hormone on the development of peoptic-hypothalamic monoaminergic neurons in tadpoles of Bufo bufo japonicus. Kikuyama, S., Miyakawa, M., Arai, Y. Cell Tissue Res. (1979) [Pubmed]
  19. A possible role of the kidney and urinary bladder in urea conservation of Bufo viridis under high salt acclimation. Katz, U., Ben-Sasson, Y. J. Exp. Biol. (1984) [Pubmed]
  20. Contraction of isolated smooth muscle cells by inophore A23187. Murray, J.J., Reed, P.W., Fay, F.S. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  21. Cloning and sequence analysis of cDNAs for neurohypophysial hormones vasotocin and mesotocin for the hypothalamus of toad, Bufo japonicus. Nojiri, H., Ishida, I., Miyashita, E., Sato, M., Urano, A., Deguchi, T. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  22. Light-dependent ion influx into toad photoreceptors. Woodruff, M.L., Fain, G.L., Bastian, B.L. J. Gen. Physiol. (1982) [Pubmed]
  23. Caffeine activates a Ca(2+)-permeable, nonselective cation channel in smooth muscle cells. Guerrero, A., Fay, F.S., Singer, J.J. J. Gen. Physiol. (1994) [Pubmed]
  24. The distribution of sodium, potassium and chloride in the nucleus and cytoplasm of Bufo bufo oocytes measured by electron microprobe analysis. Dick, D.A. J. Physiol. (Lond.) (1978) [Pubmed]
  25. Hydrins, hydroosmotic neurohypophysial peptides: osmoregulatory adaptation in amphibians through vasotocin precursor processing. Rouillé, Y., Michel, G., Chauvet, M.T., Chauvet, J., Acher, R. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  26. Aldosterone modulates sodium kinetics of Na,K-ATPase containing an alpha 1 subunit in A6 kidney cell epithelia. Beron, J., Mastroberardino, L., Spillmann, A., Verrey, F. Mol. Biol. Cell (1995) [Pubmed]
  27. Periodic changes in the rigidity of activated anuran eggs depend on germinal vesicle materials. Ohsumi, K., Shinagawa, A., Katagiri, C. Dev. Biol. (1986) [Pubmed]
  28. Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. Tetracaine blocks the UO2(2+)-insensitive pathway. Desmedt, L., Simaels, J., Van Driessche, W. J. Gen. Physiol. (1993) [Pubmed]
  29. Effects of bilirubin on transepithelial transport of sodium, water, and urea. Brem, A.S., Cashore, W.J., Pacholski, M., Tetreault, J., Lawler, R.G. Kidney Int. (1985) [Pubmed]
  30. Corticotropin-releasing factor accelerates metamorphosis in Bufo arenarum: effect on pituitary ACTH and TSH cells. Miranda, L.A., Affanni, J.M., Paz, D.A. J. Exp. Zool. (2000) [Pubmed]
  31. Studies on the GH/SL gene family: cloning of African lungfish (Protopterus annectens) growth hormone and somatolactin and toad (Bufo marinus) growth hormone. May, D., Alrubaian, J., Patel, S., Dores, R.M., Rand-Weaver, M. Gen. Comp. Endocrinol. (1999) [Pubmed]
  32. Immunocytochemical and morphometric study on the changes of TSH, PRL, GH and ACTH cells during the development of Bufo arenarum. Miranda, L.A., Paz, D.A., Dezi, R., Pisanó, A. Cell Tissue Res. (1996) [Pubmed]
  33. Identification of a fourth opioid core sequence in a prodynorphin cDNA cloned from the brain of the amphibian, Bufo marinus: deciphering the evolution of prodynorphin and proenkephalin. Danielson, P., Walker, D., Alrubaian, J., Dores, R.M. Neuroendocrinology (2002) [Pubmed]
  34. Purification and characterization of the major glutathione transferase from adult toad (Bufo bufo) liver. Aceto, A., Dragani, B., Bucciarelli, T., Sacchetta, P., Martini, F., Angelucci, S., Amicarelli, F., Miranda, M., Di Ilio, C. Biochem. J. (1993) [Pubmed]
  35. Morphological characterization of substance P-like immunoreactive amacrine cells in the anuran retina. Hiscock, J., Straznicky, C. Vision Res. (1989) [Pubmed]
  36. The hydrosmotic effect of vasopressin: a scanning electrom-microscope study. Spinelli, F., Grosso, A., de Sousa, R.C. J. Membr. Biol. (1975) [Pubmed]
  37. Quantitative histochemical studies of the effect of levamisole on splenic T-cells in thymectomized Bufo bufo larvae. Garavini, C., Rossini, M.C., Mantovani, B. Cell Tissue Res. (1982) [Pubmed]
  38. Sodium recirculation and isotonic transport in toad small intestine. Nedergaard, S., Larsen, E.H., Ussing, H.H. J. Membr. Biol. (1999) [Pubmed]
WikiGenes - Universities