Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast.
Sir2 and Hst1 are NAD+-dependent deacetylases involved in transcriptional repression in yeast. The two enzymes are highly homologous yet have different sensitivity to the small-molecule inhibitor splitomicin (compound 1) (Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E., and Simon, J. A. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 15113-15118). We have now defined a critical amino acid residue within a small helical module of Hst1 that confers relative resistance to splitomicin. Parallel cell-based screens of 100 splitomicin analogues led to the identification of compounds that exhibit a higher degree of selectivity toward Sir2 or Hst1. A series of compounds based on a splitomicin derivative, dehydrosplitomicin (compound 2), effectively phenocopied a yeast strain that lacked Hst1 deacetylase while having no effect on the silencing activities of Sir2. In addition, we identified a compound with improved selectivity for Sir2. Selectivity was affirmed using whole-genome DNA microarray analysis. This study underscores the power of phenotypic screens in the development and characterization of selective inhibitors of enzyme functions.[1]References
- Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast. Hirao, M., Posakony, J., Nelson, M., Hruby, H., Jung, M., Simon, J.A., Bedalov, A. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg