The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome.

Substrates destined for degradation by the 26 S proteasome are labeled with polyubiquitin chains. These chains can be dismantled by deubiquitinating enzymes (DUBs). A number of reports have identified different DUBs that can hydrolyze ubiquitin from substrates bound to the proteasome. We measured deubiquitination by both isolated lid and base-core particle subcomplexes, suggesting that at least two different DUBs are intrinsic components of 26 S proteasome holoenzymes. In agreement, we find that highly purified proteasomes contain both Rpn11 and Ubp6, situated within the lid and base subcomplexes, respectively. To study their relative contributions, we purified proteasomes from a mutant in the putative metalloprotease domain of Rpn11 and from a ubp6 null. Interestingly, in both preparations we observed slower deubiquitination rates, suggesting that Rpn11 and Ubp6 serve complementary roles. In accord, the double mutant is synthetically lethal. In contrast to WT proteasomes, proteasomes lacking the lid subcomplex or those purified from the rpn11 mutant are less sensitive to metal chelators, supporting the prediction that Rpn11 may be a metalloprotein. Treatment of proteasomes with ubiquitin-aldehyde or with cysteine modifiers also inhibited deubiquitination but simultaneously promoted degradation of a monoubiquitinated substrate along with the ubiquitin tag. Degradation is unique to 26 S proteasome holoenzymes; we could not detect degradation of a ubiquitinated protein by "lidless" proteasomes, although they were competent for deubiquitination. The fascinating observation that a single ubiquitin moiety is sufficient for targeting an otherwise stable substrate to proteasomes exposes how rapid deubiquitination of poorly ubiquitinated substrates may counteract degradation.[1]

References

 
WikiGenes - Universities