The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Altered structure and anion transport properties of band 3 (AE1, SLC4A1) in human red cells lacking glycophorin A.

We have studied the properties of band 3 in different glycophorin A (GPA)-deficient red cells. These red cells lack either both GPA and glycophorin B (GPB) (M(k)M(k) cells) or GPA (En(a-) cells) or contain a hybrid of GPA and GPB (MiV cells). Sulfate transport was reduced in all three red cell types to approximately 60% of that in normal control red cells as a result of an increased apparent K(m) for sulfate. Transport of the monovalent anions iodide and chloride was also reduced. The reduced iodide transport resulted from a reduction in the V(max) for iodide transport. The anion transport site was investigated by measuring iodide fluorescence quenching of eosin-5-maleimide (EMA)-labeled band 3. The GPA-deficient cells had a normal K(d) for iodide binding, in agreement with the unchanged K(m) found in transport studies. However, the apparent diffusion quenching constant (K(q)) was increased, and the fluorescence polarization of band 3-bound EMA decreased in the variant cells, suggesting increased flexibility of the protein in the region of the EMA-binding site. This increased flexibility is probably associated with the decrease in V(max) observed for iodide transport. Our results suggest that band 3 in the red cell can take up two different structures: one with high anion transport activity when GPA is present and one with lower anion transport activity when GPA is absent.[1]

References

  1. Altered structure and anion transport properties of band 3 (AE1, SLC4A1) in human red cells lacking glycophorin A. Bruce, L.J., Pan, R.J., Cope, D.L., Uchikawa, M., Gunn, R.B., Cherry, R.J., Tanner, M.J. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities