Situational repair of replication forks: roles of RecG and RecA proteins.
Replication forks often stall or collapse when they encounter a DNA lesion. Fork regression is part of several major paths to the repair of stalled forks, allowing nonmutagenic bypass of the lesion. We have shown previously that Escherichia coli RecA protein can promote extensive regression of a forked DNA substrate that mimics a possible structure of a replication fork stalled at a leading strand lesion. Using electron microscopy and gel electrophoresis, we demonstrate that another protein, E. coli RecG helicase, promotes extensive fork regression in the same system. The RecG-catalyzed fork regression is very efficient and faster than the RecA-promoted reaction (up to 240 bp s(-1)), despite very limited processivity of the RecG protein. The reaction is dependent upon ATP hydrolysis and is stimulated by single-stranded binding protein. The RecA- and RecG-promoted reactions are not synergistic. In fact, RecG functions poorly under the conditions optimal for the RecA reaction, and vice versa. When both RecA and RecG proteins are incubated with the DNA substrate, high RecG concentrations inhibit the RecA protein-promoted fork regression. The very different reaction profiles may reflect a situational application of these proteins to the rescue of stalled replication forks in vivo.[1]References
- Situational repair of replication forks: roles of RecG and RecA proteins. Robu, M.E., Inman, R.B., Cox, M.M. J. Biol. Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg