The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Stm1p, a G4 quadruplex and purine motif triplex nucleic acid-binding protein, interacts with ribosomes and subtelomeric Y' DNA in Saccharomyces cerevisiae.

The Saccharomyces cerevisiae protein Stm1 was originally identified as a G4 quadruplex and purine motif triplex nucleic acid-binding protein. However, more recent studies have suggested a role for Stm1p in processes ranging from antiapoptosis to telomere maintenance. To better understand the biological role of Stm1p and its potential for G(*)G multiplex binding, we used epitope-tagged protein and immunological methods to identify the subcellular localization and protein and nucleic acid partners of Stm1p in vivo. Indirect immunofluorescence microscopy indicated that Stm1p is primarily a cytoplasmic protein, although a small percentage is also present in the nucleus. Conventional immunoprecipitation found that Stm1p is associated with ribosomal proteins and rRNA. This association was verified by rate zonal separation through sucrose gradients, which showed that Stm1p binds exclusively to mature 80 S ribosomes and polysomes. Chromatin immunoprecipitation experiments found that Stm1p preferentially binds telomere-proximal Y' element DNA sequences. Taken together, our data suggest that Stm1p is primarily a ribosome-associated protein, but one that can also interact with DNA, especially subtelomeric sequences. We discuss the implications of our findings in relation to prior genetic, genomic, and proteomic studies that have identified STM1 and/or Stm1p as well as the possible biological role of Stm1p.[1]


WikiGenes - Universities