The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution.

We report second-order rate constants kDO (M-1 s-1) for exchange for deuterium of the C(2)-proton of a series of simple imidazolium cations to give the corresponding singlet imidazol-2-yl carbenes in D2O at 25 degrees C and I = 1.0 (KCl). Evidence is presented that the reverse protonation of imidazol-2-yl carbenes by solvent water is limited by solvent reorganization and occurs with a rate constant of kHOH = kreorg = 10(11) s-1. The data were used to calculate reliable carbon acid pK(a)s for ionization of imidazolium cations at C(2) to give the corresponding singlet imidazol-2-yl carbenes in water: pKa = 23.8 for the imidazolium cation, pKa = 23.0 for the 1,3-dimethylimidazolium cation, pKa = 21.6 for the 1,3-dimethylbenzimidazolium cation, and pKa = 21.2 for the 1,3-bis-((S)-1-phenylethyl)benzimidazolium cation. The data also provide the thermodynamic driving force for a 1,2-hydrogen shift at a singlet carbene: K12 = 5 x 10(16) for rearrangement of the parent imidazol-2-yl carbene to give neutral imidazole in water at 298 K, which corresponds to a favorable Gibbs free energy change of 23 kcal/ mol. We present a simple rationale for the observed substituent effects on the thermodynamic stability of N-heterocyclic carbenes relative to a variety of neutral and cationic derivatives that emphasizes the importance of the choice of reference reaction when assessing the stability of N-heterocyclic carbenes.[1]

References

  1. Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. Amyes, T.L., Diver, S.T., Richard, J.P., Rivas, F.M., Toth, K. J. Am. Chem. Soc. (2004) [Pubmed]
 
WikiGenes - Universities