The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila.

Drosophila larvae defend themselves against parasitoid wasps by completely surrounding the egg with layers of specialized hemocytes called lamellocytes. Similar capsules of lamellocytes, called melanotic capsules, are also formed around "self" tissues in larvae carrying gain-of-function mutations in Toll and hopscotch. Constitutive differentiation of lamellocytes in larvae carrying these mutations is accompanied by high concentrations of plasmatocytes, the major hemocyte class in uninfected control larvae. The relative contributions of hemocyte concentration vs. lamellocyte differentiation to wasp egg encapsulation are not known. To address this question, we used Leptopilina boulardi to infect more than a dozen strains of host larvae harboring a wide range of hemocyte densities. We report a significant correlation between hemocyte concentration and encapsulation capacity among wild-type larvae and larvae heterozygous for mutations in the Hopscotch-Stat92E and Toll-Dorsal pathways. Larvae carrying loss-of-function mutations in Hopscotch, Stat92E, or dorsal group genes exhibit significant reduction in encapsulation capacity. Larvae carrying loss-of-function mutations in dorsal group genes (including Toll and tube) have reduced hemocyte concentrations, whereas larvae deficient in Hopscotch-Stat92E signaling do not. Surprisingly, unlike hopscotch mutants, Toll and tube mutants are not compromised in their ability to generate lamellocytes. Our results suggest that circulating hemocyte concentration and lamellocyte differentiation constitute two distinct physiological requirements of wasp egg encapsulation and Toll and Hopscotch proteins serve distinct roles in this process.[1]

References

 
WikiGenes - Universities