The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hemocytes


High impact information on Hemocytes

  • The VEGF receptor homolog is expressed in hemocytes, and three VEGF homologs are expressed along hemocyte migration routes [6].
  • When wheat germ agglutinin conjugated to fluorescein isothiocyanate is bound to hemocytes from larvae of Drosophila melanogaster, two populations of hemocytes are distinguished [7].
  • Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells [8].
  • For the first time, we are able to examine the roles of Rho-family small GTPases during inflammation in vivo and show that Rac-mediated lamellae are essential for hemocyte motility and Rho signaling is necessary for cells to retract from sites of matrix- and cell-cell contacts [9].
  • By contrast, constitutively active hopscotch and hemipterous give massive activation of lamellocyte formation with little or no increase in total hemocyte numbers [10].

Chemical compound and disease context of Hemocytes

  • We initially observed that different stimuli, including LPS, E. coli, RGD, fibronectin and heat shock activate hemocyte ERK [11].
  • A model system consisting of an isolated hemocyte protein (47 KDa), isolated hemocyte tyrosinase, isolated hemocytes, tyrosine, and E. coli was used to obtain these results [12].
  • A previous in vitro study has indicated that four phthalate esters (PAEs) could damage hemocytes and decreases the cellular immunity of prawns [Sung, H.H., Kao, W.Y., Su, Y.J., 2003. Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobranchium rosenbergii. Aquat. Toxicol. 64, 25-37] [13].
  • Uptake of LPS/E. coli/latex beads via distinct signalling pathways in medfly hemocytes: the role of MAP kinases activation and protein secretion [14].
  • Those GTN concentrations that did not have a negative effect on hemocyte viability did not produce sufficient NO to significantly alter the chemiluminescent response to zymosan in all cases, nor the ability of hemocytes to phagocytose bacteria (Escherichia coli) [15].

Biological context of Hemocytes


Anatomical context of Hemocytes


Associations of Hemocytes with chemical compounds

  • We also illustrate how important, evolutionarily conserved, blood-cell-regulatory molecules, such as calcium and glutathione, can be studied functionally within hemocytes [25].
  • The injection of a synthetic analog of [Met]enkephalin [( D-Ala2,Met5]enkephalinamide, DAMA; 10(-6) M) had a stimulatory, naloxone-reversible effect on the directed migration of immunocompetent hemocytes [26].
  • Homologous repeats are found in L-6, a bacterial lipopolysaccharide-binding lectin from horseshoe crab hemocytes [27].
  • Additional serine proteinases expressed in M. sexta hemocytes and fat body have been discovered [28].
  • The hemocytes of the horseshoe crab have been found to contain a new family of Arthropodous antibiotics, termed the "tachyplesin family." These peptides are composed of 17-18 amino acid residues with a carboxyl-terminal arginine alpha-amide [29].

Gene context of Hemocytes

  • In contrast, whereas U-shaped and SrpNC together blocked crystal cell production, coexpression of U-shaped with noninteracting Srp proteins failed to prevent overproduction of this hemocyte population [17].
  • Here, we take a gain of function approach to study Drosophila tetraspanin Tsp68C and its effect on larval hemocytes [30].
  • In addition, gcm has a role in the differentiation of the plasmatocyte/macrophage lineage of hemocytes [31].
  • We find that preventing hemocyte migration by removing the function of the Drosophila VEGF receptor homologue, Pvr, or by disrupting Rac1 function in these cells, inhibits condensation [32].
  • This overproduction of hemocytes is attributed to the loss of lwr function primarily in hemocytes and the lymph glands, a hematopoietic organ in Drosophila larvae [33].

Analytical, diagnostic and therapeutic context of Hemocytes


  1. Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the Ras/mitogen-activated protein kinase signal transduction pathway for attachment and beta3 integrin for internalization. Foukas, L.C., Katsoulas, H.L., Paraskevopoulou, N., Metheniti, A., Lambropoulou, M., Marmaras, V.J. J. Biol. Chem. (1998) [Pubmed]
  2. Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. Trudeau, D., Washburn, J.O., Volkman, L.E. J. Virol. (2001) [Pubmed]
  3. Regulation of larval hematopoiesis in Drosophila melanogaster: a role for the multi sex combs gene. Remillieux-Leschelle, N., Santamaria, P., Randsholt, N.B. Genetics (2002) [Pubmed]
  4. Dietary lipid requirements of adult lobsters, Homarus americanus (M.E.). Castell, J.D., Covey, J.F. J. Nutr. (1976) [Pubmed]
  5. Cytoskeleton alterations by tributyltin (TBT) in tunicate phagocytes. Cima, F., Ballarin, L., Bressa, G., Burighel, P. Ecotoxicol. Environ. Saf. (1998) [Pubmed]
  6. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cho, N.K., Keyes, L., Johnson, E., Heller, J., Ryner, L., Karim, F., Krasnow, M.A. Cell (2002) [Pubmed]
  7. Blood cell surface changes in Drosophila mutants with melanotic tumors. Rizki, T.M., Rizki, R.M. Science (1983) [Pubmed]
  8. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Franc, N.C., Dimarcq, J.L., Lagueux, M., Hoffmann, J., Ezekowitz, R.A. Immunity (1996) [Pubmed]
  9. Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. Stramer, B., Wood, W., Galko, M.J., Redd, M.J., Jacinto, A., Parkhurst, S.M., Martin, P. J. Cell Biol. (2005) [Pubmed]
  10. A directed screen for genes involved in Drosophila blood cell activation. Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., Hultmark, D. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  11. Distinct LPS-induced signals regulate LPS uptake and morphological changes in medfly hemocytes. Soldatos, A.N., Metheniti, A., Mamali, I., Lambropoulou, M., Marmaras, V.J. Insect Biochem. Mol. Biol. (2003) [Pubmed]
  12. Cellular defense mechanisms in C. capitata: recognition and entrapment of E. coli by hemocytes. Marmaras, V.J., Charalambidis, N.D., Lambropoulou, M. Arch. Insect Biochem. Physiol. (1994) [Pubmed]
  13. The toxic effect of phthalate esters on immune responses of giant freshwater prawn (Macrobrachium rosenbergii) via oral treatment. Chen, W.L., Sung, H.H. Aquat. Toxicol. (2005) [Pubmed]
  14. Uptake of LPS/E. coli/latex beads via distinct signalling pathways in medfly hemocytes: the role of MAP kinases activation and protein secretion. Lamprou, I., Tsakas, S., Theodorou, G.L., Karakantza, M., Lampropoulou, M., Marmaras, V.J. Biochim. Biophys. Acta (2005) [Pubmed]
  15. Production of nitric oxide by mussel (Mytilus galloprovincialis) hemocytes and effect of exogenous nitric oxide on phagocytic functions. Tafalla, C., Novoa, B., Figueras, A. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (2002) [Pubmed]
  16. A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Ariki, S., Koori, K., Osaki, T., Motoyama, K., Inamori, K., Kawabata, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  17. Combinatorial interactions of serpent, lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Fossett, N., Hyman, K., Gajewski, K., Orkin, S.H., Schulz, R.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  18. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Pearson, A., Lux, A., Krieger, M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  19. Tiggrin, a novel Drosophila extracellular matrix protein that functions as a ligand for Drosophila alpha PS2 beta PS integrins. Fogerty, F.J., Fessler, L.I., Bunch, T.A., Yaron, Y., Parker, C.G., Nelson, R.E., Brower, D.L., Gullberg, D., Fessler, J.H. Development (1994) [Pubmed]
  20. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Qiu, P., Pan, P.C., Govind, S. Development (1998) [Pubmed]
  21. Tissue-specific ecdysone responses: regulation of the Drosophila genes Eip28/29 and Eip40 during larval development. Andres, A.J., Cherbas, P. Development (1992) [Pubmed]
  22. Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases. Kramerova, I.A., Kawaguchi, N., Fessler, L.I., Nelson, R.E., Chen, Y., Kramerov, A.A., Kusche-Gullberg, M., Kramer, J.M., Ackley, B.D., Sieron, A.L., Prockop, D.J., Fessler, J.H. Development (2000) [Pubmed]
  23. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. Manaka, J., Kuraishi, T., Shiratsuchi, A., Nakai, Y., Higashida, H., Henson, P., Nakanishi, Y. J. Biol. Chem. (2004) [Pubmed]
  24. A lipopolysaccharide- and beta-1,3-glucan-binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. Lee, S.Y., Wang, R., Söderhäll, K. J. Biol. Chem. (2000) [Pubmed]
  25. Fluorescence-activated cell sorting (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes. Tirouvanziam, R., Davidson, C.J., Lipsick, J.S., Herzenberg, L.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  26. Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes. Stefano, G.B., Leung, M.K., Zhao, X.H., Scharrer, B. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  27. Cloning and characterization of Physarum polycephalum tectonins. Homologues of Limulus lectin L-6. Huh, C.G., Aldrich, J., Mottahedeh, J., Kwon, H., Johnson, C., Marsh, R. J. Biol. Chem. (1998) [Pubmed]
  28. Innate immune responses of a lepidopteran insect, Manduca sexta. Kanost, M.R., Jiang, H., Yu, X.Q. Immunol. Rev. (2004) [Pubmed]
  29. Antimicrobial tachyplesin peptide precursor. cDNA cloning and cellular localization in the horseshoe crab (Tachypleus tridentatus). Shigenaga, T., Muta, T., Toh, Y., Tokunaga, F., Iwanaga, S. J. Biol. Chem. (1990) [Pubmed]
  30. Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Sinenko, S.A., Mathey-Prevot, B. Oncogene (2004) [Pubmed]
  31. gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Alfonso, T.B., Jones, B.W. Dev. Biol. (2002) [Pubmed]
  32. Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Olofsson, B., Page, D.T. Dev. Biol. (2005) [Pubmed]
  33. The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Huang, L., Ohsako, S., Tanda, S. Dev. Biol. (2005) [Pubmed]
  34. Isolation, purification, and amino acid composition of the tunicate hemocyte Thy-1 homolog. Mansour, M.H., DeLange, R., Cooper, E.L. J. Biol. Chem. (1985) [Pubmed]
  35. Mortalin-Based Cytoplasmic Sequestration of p53 in a Nonmammalian Cancer Model. Walker, C., Böttger, S., Low, B. Am. J. Pathol. (2006) [Pubmed]
  36. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. Li, X., Webb, B.A. J. Virol. (1994) [Pubmed]
  37. In situ localization of ACTH receptor-like mRNA in molluscan and human immunocytes. Ottaviani, E., Franchini, A., Hanukoglu, I. Cell. Mol. Life Sci. (1998) [Pubmed]
  38. Characterization of novel ascidian beta integrins as primitive complement receptor subunits. Miyazawa, S., Nonaka, M. Immunogenetics (2004) [Pubmed]
WikiGenes - Universities