The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism.

The effects of SO(2) on species exhibiting Crassulacean Acid Metabolism (CAM) were determined with short term-high concentration 'acute' greenhouse exposures (0.6 to 3.0 microl liter(-1) (ppm) SO(2) for 2 and 8 h), and long term-low concentration 'chronic' field exposures (0.35 to 0.90 microl liter(-1) SO(2) for 32 to 79 h periodically over 7 to 13 days). In the acute greenhouse exposures, visible injury was observed on Opuntia basilaris Engelm. & Bigel., exposed to 2.0 microl liter(-1) SO(2), but no injury was observed on Ananas comosus (L.) Merr., Bryophyllum blossfeldiana Poelln., Bryophyllum pinnata (Lam.) Pers., or Bryophyllum tubiflora (Harv.) Hamet, exposed to up to 2.8 microl liter(-1) SO(2) for 8 h. Stomatal conductance during the exposures averaged 0.067+/-0.021mol(-2)s(-1) for Opuntia basilaris, 0.029+/-0.008mol(-2)s(-1) for Ananas comosus, and 0.029+/-0.008mol m(-2)s(-1) for Bryophyllum pinnata. Opuntia basilaris was injured early during the day, but not at night; with the injury appearing as a white necrotic banding across just fully expanded pads. Moderately injured pads would regreen beginning 1 to 2 weeks after exposure. In chronic field exposures, no visible injury from SO(2) was observed on Opuntia basilaris, Dudleya arizonica Rose or Agave deserti Engelm. plants, grown either with supplemental irrigation or natural rainfall. In addition, in the field SO(2) had no effect on CO(2) uptake, total sulfur content, transpiration, or tissue acidity in either the light or the dark, or in irrigated vs natural rainfall plots.[1]

References

  1. Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism. Olszyk, D.M., Bytnerowicz, A., Fox, C.A. Environ. Pollut. (1987) [Pubmed]
 
WikiGenes - Universities