The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3.

Presence of the activating length mutation (LM) in the juxtamembrane domain or point mutation in the kinase domain of FMS-like tyrosine kinase-3 (FLT-3) mediates ligand-independent progrowth and prosurvival signaling in approximately one-third of acute myelogenous leukemia (AML). PKC412, an inhibitor of FLT-3 kinase activity, is being clinically evaluated in AML. Present studies demonstrate that treatment of human acute leukemia MV4-11 cells (containing a FLT-3 LM) with the heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin (17-AAG) attenuated the levels of FLT-3 by inhibiting its chaperone association with heat shock protein 90, which induced the poly-ubiquitylation and proteasomal degradation of FLT-3. Treatment with 17-AAG induced cell cycle G(1) phase accumulation and apoptosis of MV4-11 cells. 17-AAG-mediated attenuation of FLT-3 and p-FLT-3 in MV4-11 cells was associated with decrease in the levels of p-AKT, p-ERK1/2, and p-STAT5, as well as attenuation of the DNA binding activity of STAT-5. Treatment with 17-AAG, downstream of STAT5, reduced the levels of c-Myc and oncostatin M, which are transactivated by STAT5. Cotreatment with 17-AAG and PKC412 markedly down-regulated the levels of FLT-3, p-FLT-3, p-AKT, p-ERK1/2, and p-STAT5, as well as induced more apoptosis of MV4-11 cells than either agent alone. Furthermore, the combination of 17-AAG and PKC412 exerted synergistic cytotoxic effects against MV4-11 cells. Importantly, 17-AAG and PKC412 induced more loss of cell viability of primary AML blasts containing FLT-3 LM, as compared with those that contained wild-type FLT-3. Collectively, these in vitro findings indicate that the combination of 17-AAG and PKC412 has high level of activity against AML cells with FLT-3 mutations.[1]

References

  1. Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. George, P., Bali, P., Cohen, P., Tao, J., Guo, F., Sigua, C., Vishvanath, A., Fiskus, W., Scuto, A., Annavarapu, S., Moscinski, L., Bhalla, K. Cancer Res. (2004) [Pubmed]
 
WikiGenes - Universities