The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Artificially ambiguous genetic code confers growth yield advantage.

A primitive genetic code is thought to have encoded statistical, ambiguous proteins in which more than one amino acid was inserted at a given codon. The relative vitality of organisms bearing ambiguous proteins and the kinds of pressures that forced development of the highly specific modern genetic code are unknown. Previous work demonstrated that, in the absence of selective pressure, enforced ambiguity in cells leads to death or to sequence reversion to eliminate the ambiguous phenotype. Here, we report the creation of a nonreverting strain of bacteria that produced statistical proteins. Ablating the editing activity of isoleucyl-tRNA synthetase resulted in an ambiguous code in which, through supplementation of a limited supply of isoleucine with an alternative amino acid that was noncoding, the mutant generating statistical proteins was favored over the wild-type isogenic strain. Such organisms harboring statistical proteins could have had an enhanced adaptive capacity and could have played an important role in the early development of living systems.[1]


  1. Artificially ambiguous genetic code confers growth yield advantage. Pezo, V., Metzgar, D., Hendrickson, T.L., Waas, W.F., Hazebrouck, S., Döring, V., Marlière, P., Schimmel, P., De Crécy-Lagard, V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
WikiGenes - Universities