The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 ( gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin c domains and the MMP-2 fibronectin type II modules in collagen triple helicase activities.

Matrix metalloproteinase-2 ( MMP-2, gelatinase A) and membrane type (MT)1-MMP ( MMP-14) are cooperative dynamic components of a cell surface proteolytic axis involved in regulating the cellular signaling environment and pericellular collagen homeostasis. Although MT1-MMP exhibits type I collagenolytic but poor gelatinolytic activities, MMP-2 is a potent gelatinase with weak type I collagenolytic behavior. Recombinant linker/hemopexin C domain (LCD) of MT1-MMP binds native type I collagen, blocks MT1-MMP collagenolytic activity in trans, and by circular dichroism spectroscopy, induces localized structural perturbation in the collagen. These changes were reflected by enhanced cleavage of the MT1-LCD-bound collagen by the collagenases MMP-1 and MMP-8 but not by trypsin or MMP-7. Thus, the MT1-LCD alone can initiate triple helicase activity. In contrast, the native and denatured collagen binding properties of MMP-2 reside in the fibronectin type II modules, accordingly termed the collagen binding domain (CBD). Recombinant CBD (but not the MMP-2 LCD) also changed the circular dichroism spectra leading to increased MMP-1 and -8 cleavage of native collagen. However, recombinant CBD reduced gelatin and collagen cleavage by MMP-2 in trans as did CBD23, which comprises the second and third fibronectin type II modules, but not the CBD23 mutant W316A/W374A, which neither binds gelatin nor collagen. This indicates that MMP-2 and MT1-MMP bind collagen at a different site than MMP-1 and MMP-8. Thus, MMP-2 utilizes the CBD in cis for collagen binding and triple helicase activity, which compensates for the lack of collagen binding by the MMP-2 LCD. Hence, the MMP family has evolved two distinct mechanisms for collagen triple helicase activity using two structurally distinct domains, with triple helicase activity occurring independent of alpha-chain hydrolysis.[1]


WikiGenes - Universities