The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae.

Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.[1]


WikiGenes - Universities