Ceramide reduction and transcriptional up-regulation of glucosylceramide synthase through doxorubicin-activated Sp1 in drug-resistant HL-60/ADR cells.
Treatment with doxorubicin (DOX) induced apoptosis with an increase of ceramide content in drug-sensitive HL-60 cells, but not in drug-resistant HL-60/ADR cells. In HL-60/ADR cells (but not in HL-60 cells), the levels of mRNA, protein, and activity in glucosylceramide synthase ( GCS), which converts ceramide to glucosylceramide, were up-regulated in response to DOX. Thus, abrogation of apoptosis in HL-60/ADR cells might be involved in ceramide reduction through DOX-induced up-regulation of GCS function. Because we reported that a GC-rich/Sp1 promoter binding region was of importance in the regulation of GCS expression, the role of Sp1 in DOX-induced up-regulation of GCS and apoptosis was investigated. DOX induced Sp1 activation in HL-60/ADR cells, as assessed by Sp1 gel shift and promoter-luciferase reporter assays, whereas transfection of double-stranded oligodeoxynucleotides (ODNs) containing a GC-rich/Sp1 region (Sp1 decoy ODNs) inhibited DOX-induced Sp1 activation. In addition, DOX-increased mRNA and enzyme activity in GCS were inhibited by Sp1 decoy, in conjunction with corresponding elevations of ceramide content. Moreover, DOX-induced apoptotic cell death was significantly increased in Sp1 decoy ODN-transfected HL-60/ADR cells over mock-transfected HL-60/ADR cells. Together, the results suggest that transcriptional up-regulation of GCS through DOX-induced activation of Sp1 is one potential mechanism to regulate ceramide increase and apoptosis in HL-60/ADR cells.[1]References
- Ceramide reduction and transcriptional up-regulation of glucosylceramide synthase through doxorubicin-activated Sp1 in drug-resistant HL-60/ADR cells. Uchida, Y., Itoh, M., Taguchi, Y., Yamaoka, S., Umehara, H., Ichikawa, S., Hirabayashi, Y., Holleran, W.M., Okazaki, T. Cancer Res. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg