The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Contribution of Kir4.1 to the mouse electroretinogram.

PURPOSE: The electroretinogram (ERG) represents the combination of several distinct cellular processes and conductances. Here, we define the contribution that K+ conductance through Kir4.1 channels makes to the mouse ERG. METHODS: To obtain mice expressing different levels of Kir4.1, we mated Kir4.1+/- mice and used PCR to identify Kir4.1+/- and Kir4.1+/+ littermates. In addition, we mated Kir4.1+/- males with females homozygous for the nob (no b-wave) defect, which eliminates post-receptoral contributions to the ERG. After overnight dark adaptation, mice were anesthetized and ERGs were recorded to 7 min stimuli, to focus on slow ERG components, or to strobe flash stimuli, to examine earlier ERG components. RESULTS: The amplitudes of the ERG c-wave and the fast oscillation, measured from the c-wave peak, were significantly larger in Kir4.1+/- mice than in Kir4.1+/+ littermates. In comparison, the amplitude of the light peak, the other main component generated by the retinal pigment epithelium in response to light, did not differ between Kir4.1+/- and Kir4.1+/+ mice. The amplitude of slow PIII, revealed by the nob genetic background, was reduced in Kir4.1+/- mice. CONCLUSIONS: These results indicate that a cornea-negative potential, generated by Kir4.1, normally opposes a positive polarity conductance that is generated by the apical membrane of the retinal pigment epithelium to form the c-wave measured at the corneal surface.[1]


  1. Contribution of Kir4.1 to the mouse electroretinogram. Wu, J., Marmorstein, A.D., Kofuji, P., Peachey, N.S. Mol. Vis. (2004) [Pubmed]
WikiGenes - Universities